Systematic Mapping Study on Natural Language Processing for Social Robots

Authors

  • Aysu İrem Adem Atılım University
  • Çiğdem Turhan
  • Arda Sezen

DOI:

https://doi.org/10.22399/ijcesen.341

Keywords:

Natural Language Processing, Social Robots

Abstract

Nowadays, social robots are becoming increasingly sophisticated in terms of their ability to interact with humans and possess social skills, and in this context, natural language processing (NLP) plays a critical role for robots to understand and communicate with human language. Natural Language Processing (NLP) is an interdisciplinary field used to help computers understand, interpret, and generate human language with a wide range of applications. The examination of the datasets, methods/techniques and tools, and usage of speech recognition or generation in the fields of NLP is important in understanding the developments in this field. In this study, 35 out of 92 studies in the literature collected from Web of Science were examined using a systematic mapping approach, and important findings on the use of NLP in social robots were identified. In particular, emphasis was placed on the effective evaluation of the research questions in the context of NLP in social robots. This study creates a starting point that will guide research in the field of NLP use in social robots and guide future studies.

References

M. M. A. de Graaf, S. Ben Allouch, & J. A. G. M. van Dijk. (2015). What makes robots social?: A user’s perspective on characteristics for social human-robot interaction. In Proceedings (pp. 184–193). Springer. https://doi.org/10.1007/978-3-319-25554-5_19

M. M. Neumann. (2020). Social robots and young children’s early language and literacy learning. Early Childhood Education Journal, 48(2), 157–170. Springer. https://doi.org/10.1007/s10643-019-00997-7

C. Breazeal. (2009). Role of expressive behaviour for robots that learn from people. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1535), 3527–3538. https://doi.org/10.1098/rstb.2009.0157

M. Lohse, F. Hegel, & B. Wrede. (2008). Domestic applications for social robots: An online survey on the influence of appearance and capabilities. Journal of Physical Agents (JoPha), 2(2), 21–32. https://doi.org/10.14198/JoPha.2008.2.2.04

L. Martín Galván, E. Fernández-Rodicio, J. Sevilla Salcedo, Á. Castro-González, & M. A. Salichs. (2023). Using deep learning for implementing paraphrasing in a social robot. In Proceedings (pp. 219–228). Springer. https://doi.org/10.1007/978-3-031-22356-3_21

M. Kaiser, H. Friedrich, V. Klingspor, & K. Morik. (1999). Learning in human-robot communication. In Making robots smarter (pp. 129–136). Springer US. https://doi.org/10.1007/978-1-4615-5239-0_8

N. Madnani. (2007). Getting started on natural language processing with Python. XRDS: Crossroads, The ACM Magazine for Students, 13(4), 5–5. https://doi.org/10.1145/1315325.1315330

C. S. Patil. (2022). NLP assisted text annotation. International Journal of Scientific Research in Engineering and Management, 6(6). https://doi.org/10.55041/IJSREM14651

A. Fujii & J. Kristiina. (2022). Open source system integration towards natural interaction with robots. In 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (pp. 768–772). IEEE. https://doi.org/10.1109/HRI53351.2022.9889582

S. Latif, H. Cuayáhuitl, F. Pervez, F. Shamshad, H. S. Ali, & E. Cambria. (2023). A survey on deep reinforcement learning for audio-based applications. Artificial Intelligence Review, 56(3), 2193–2240. https://doi.org/10.1007/s10462-022-10224-2

M. Kwon, Y.-S. Jeong, & H.-J. Choi. (2020). Implementation of Python-based Korean speech generation service with Tacotron. In 2020 IEEE International Conference on Big Data and Smart Computing (BigComp) (pp. 551–552). IEEE. https://doi.org/10.1109/BigComp48618.2020.000-5

K. Petersen, S. Vakkalanka, & L. Kuzniarz. (2015). Guidelines for conducting systematic mapping studies in software engineering: An update. Information and Software Technology, 64, 1–18. https://doi.org/10.1016/j.infsof.2015.03.007

K. Petersen, R. Feldt, S. Mujtaba, & M. Mattsson. (2008). Systematic mapping studies in software engineering. 12th International Conference on Evaluation and Assessment in Software Engineering (EASE) https://doi.org/10.14236/ewic/EASE2008.8

S. Tellex, N. Gopalan, H. Kress-Gazit, & C. Matuszek. (2020). Robots that use language. Annual Review of Control, Robotics, and Autonomous Systems. https://doi.org/10.1146/annurev-control-101119

N. Wake, M. Sato, K. Sasabuchi, M. Nakamura, & K. Ikeuchi. (2022). Labeling the phrases of a conversational agent with a unique personalized vocabulary. In 2022 IEEE/SICE International Symposium on System Integration, SII 2022 (pp. 856–863). IEEE. https://doi.org/10.1109/SII52469.2022.9708605

X. Sun, C. Weber, M. Kerzel, T. Weber, M. Li, & S. Wermter. (2022). Learning visually grounded human-robot dialog in a hybrid neural architecture Artificial Neural Networks and Machine Learning – ICANN 2022: 31st International Conference on Artificial Neural Networks, Bristol, UK, September 6–9, 2022, Proceedings, Part II (pp. 258–269). doi:10.1007/978-3-031-15931-2_22

C. W. Chen, S. P. Tseng, T. W. Kuan, & J. F. Wang. (2020). Outpatient text classification using attention-based bidirectional LSTM for robot-assisted servicing in hospital. Information (Switzerland), 11(2). doi:10.3390/info11020106

J. Devlin, M.-W. Chang, K. Lee, K. T. Google, & A. I. Language. BERT: Pre-training of deep bidirectional transformers for language understanding. Retrieved from https://github.com/tensorflow/tensor2tensor

S. Xu, C. Zhang, & D. Hong. (2022). BERT-based NLP techniques for classification and severity modeling in basic warranty data study. Insurance: Mathematics and Economics, 107, 57–67. doi:10.1016/j.insmatheco.2022.07.013

C. Li, D. Chrysostomou, & H. Yang. (2022). A natural language-enabled virtual assistant for human-robot interaction in industrial environments. In Proceedings - 2022 IEEE 22nd International Conference on Software Quality, Reliability and Security Companion, QRS-C 2022 (pp. 673–678). Institute of Electrical and Electronics Engineers Inc. doi:10.1109/QRS-C57518.2022.00107

S. Balhara et al. (2022). A survey on deep reinforcement learning architectures, applications and emerging trends. IET Communications. doi:10.1049/cmu2.12447

V. Murali, R. J. Sarma, P. A. Sukanya, & P. Athri. (2018). ChEMBL bot - A chat bot for ChEMBL database. In 2018 Fourteenth International Conference on Information Processing (ICINPRO) (pp. 1–6). IEEE. doi:10.1109/ICINPRO43533.2018.9096710

C.-Y. Chang, S.-J. Lee, & C.-C. Lai. (2017). Weighted word2vec based on the distance of words. In 2017 International Conference on Machine Learning and Cybernetics (ICMLC) (pp. 563–568). IEEE. doi:10.1109/ICMLC.2017.8108974

T. Bocklisch, J. Faulkner, N. Pawlowski, & A. Nichol. (2017). Rasa: Open source language understanding and dialogue management. Retrieved from http://arxiv.org/abs/1712.05181

S. Lemaignan, S. Cooper, R. Ros, L. Ferrini, A. Andriella, & A. Irisarri. (2023). Open-source natural language processing on the PAL Robotics ARI social robot. In ACM/IEEE International Conference on Human-Robot Interaction (pp. 907–908). IEEE Computer Society. doi:10.1145/3568294.3580041

S. Paul, M. Sintek, V. Këpuska, M. Silaghi, & L. Robertson. (2022). Intent based multimodal speech and gesture fusion for human-robot communication in assembly situation. In Proceedings - 21st IEEE International Conference on Machine Learning and Applications, ICMLA 2022 (pp. 760–763). Institute of Electrical and Electronics Engineers Inc. doi:10.1109/ICMLA55696.2022.00127

A. Ștefania Ghiță et al. (2020). The amiro social robotics framework: Deployment and evaluation on the pepper robot. Sensors (Switzerland), 20(24), 1–34. doi:10.3390/s20247271

L. Padró and E. Stanilovsky, “FreeLing 3.0: Towards Wider Multilinguality FreeLing project developer.” [Online]. Available: http://nlp.lsi.upc.edu/freeling.

C. Aceta, I. Fernández, and A. Soroa, (2022). KIDE4I: A Generic Semantics-Based Task-Oriented Dialogue System for Human-Machine Interaction in Industry 5.0 Applied Sciences (Switzerland), 12(3), doi: 10.3390/app12031192.

F. de Arriba-Pérez, S. García-Méndez, F. J. González-Castaño, and E. Costa-Montenegro, (2021). Evaluation of abstraction capabilities and detection of discomfort with a newscaster chatbot for entertaining elderly users Sensors, 21(16), doi: 10.3390/s21165515.

G. Sidorov, I. Markov, O. Kolesnikova, and L. Chanona-Hernández, (2019). Human interaction with shopping assistant robot in natural language,” Journal of Intelligent and Fuzzy Systems, 36(5) 4889–4899, doi: 10.3233/JIFS-179036.

Z. Hu, “Software Program Design and Implementation of Voice Robots,” in Proceedings of the 2016 4th International Conference on Management, Education, Information and Control (MEICI 2016), Paris, France: Atlantis Press, 2016. doi: 10.2991/meici-16.2016.140.

S. Ruan et al., “EnglishBot: An AI-Powered Conversational System for Second Language Learning,” in International Conference on Intelligent User Interfaces, Proceedings IUI, Association for Computing Machinery, Apr. 2021, pp. 434–444. doi: 10.1145/3397481.3450648.

C. Li, J. Park, H. Kim, and D. Chrysostomou, “How can I help you? An intelligent virtual assistant for industrial robots,” in ACM/IEEE International Conference on Human-Robot Interaction, IEEE Computer Society, Mar. 2021, pp. 220–224. doi: 10.1145/3434074.3447163.

W. Budiharto, V. Andreas, and A. A. S. Gunawan, (2020). Deep learning-based question answering system for intelligent humanoid robot J Big Data, 7(1), doi: 10.1186/s40537-020-00341-6.

C. Li, D. Chrysostomou, and H. Yang, (2023). A speech-enabled virtual assistant for efficient human–robot interaction in industrial environments. Journal of Systems and Software, 205, doi: 10.1016/j.jss.2023.111818.

M. A. Hearst, (2015). Can Natural Language Processing Become Natural Language Coaching?,” in Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Stroudsburg, PA, USA: Association for Computational Linguistics, 2015, pp. 1245–1252. doi: 10.3115/v1/P15-1120.

Y. Kim and A. L. Baylor, (2006). A Social-Cognitive Framework for Pedagogical Agents as Learning Companions. Educational Technology Research and Development, 54(6);569–596, doi: 10.1007/s11423-006-0637-3.

S. Bosse, “Distributed Serverless Chat Bot Networks using mobile Agents: A Distributed Data Base Model for Social Networking and Data Analytics.” Doi:10.5220/0010319503980405

A. N. Aqil, B. Dirgantara, A. Ahmad, R. R. Septiawan, and A. L. Suherman, “Robot Chat System (Chatbot) to Help Users ‘Homelab’ based in Deep Learning.” [Online]. Available: www.ijacsa.thesai.org.

T. Taipalus, (2023). Systematic Mapping Study in Information Systems Research. Journal of the Midwest Association for Information Systems (JMWAIS), 2023(2), doi: 10.17705/3jmwa.000079.

Downloads

Published

2024-10-02

How to Cite

Adem, A. İrem, Turhan, Çiğdem, & Sezen, A. (2024). Systematic Mapping Study on Natural Language Processing for Social Robots. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.341

Issue

Section

Research Article