Trends in Research on The Effects of Nutritional Supplements Against Nephrotoxicity; A Bibliometric Study

Authors

DOI:

https://doi.org/10.22399/ijcesen.389

Keywords:

Antioxidants, Acute kidney injury, Functional foods, Supplements, Nephrotoxicity

Abstract

Aim; Publications investigating the potential of various nutritional supplements such as antioxidants, probiotics, and phytochemicals to improve drug-induced nephrotoxicity has increased both qualitatively and quantitatively over the years. This bibliometric analysis evaluated highly cited 100 articles on the protective effects of nutritional supplements against nephrotoxicity published between 2010 and 2023.

Method; Articles published in these 13 years were evaluated through structured search in Scopus and Web of Science databases. Statistics and visualization techniques were done with VOSviewer and RStudio software.

Results; The increase rate of articles published on this subject was found to be %450. The average h-index of selected studies was calculated as 60. A total of 534 authors and a citation rate of 86.95 were determined. The total citation mean was determined as 9 per year. The top 3 supplements were curcumin (n=7) melatonin and probiotics (n=5) in the trends. Cisplatin and gentamicin are used as toxic agents in 34% of the top 100 articles we researched, and they continue to be a trend.

Conclusion; Trending and effective supplements in this field are curcumin, melatonin, berberine, quercetin and probiotics. Based on our investigations, we think that, the synergistic between the effective bioactive ingredients with probiotics and/or other functional foods suggest future novel approaches based on interactions involving microbiota, oxidative and inflammatory stress.

References

Leoncini, M., Toso, A., Maioli, M., Tropeano, F., Villani, S., and Bellandi, F., (2014). Early High-Dose Rosuvastatin for Contrast-Induced Nephropathy Prevention in Acute Coronary Syndrome: Results from the PRATO-ACS Study (Protective Effect of Rosuvastatin and Antiplatelet Therapy on Contrast-Induced Acute Kidney Injury and Myocardial Damage in Patients with Acute Coronary Syndrome), Journal of the American College of Cardiology, 63(1);71–79. https://doi.org/10.1016/j.jacc.2013.04.105

Sinanoglu, O., Yener, A. N., Ekici, S., Midi, A., and Aksungar, F. B., (2012). The Protective Effects of Spirulina in Cyclophosphamide Induced Nephrotoxicity and Urotoxicity in Rats, Urology, 80(6);1392.e1-1392.e6. https://doi.org/10.1016/j.urology.2012.06.053

Altınkaynak, Y., Kural, B., Akcan, B. A., Bodur, A., Özer, S., Yuluğ, E., Munğan, S., Kaya, C., and Örem, A., (2018). Protective Effects of L-Theanine against Doxorubicin-Induced Nephrotoxicity in Rats, Biomedicine and Pharmacotherapy, 108;1524–1534. https://doi.org/10.1016/j.biopha.2018.09.171

Kellum, J. A., Romagnani, P., Ashuntantang, G., Ronco, C., Zarbock, A., and Anders, H. J., (2021). Acute Kidney Injury, Nature Reviews Disease Primers. 7(52). https://doi.org/10.1038/s41572-021-00284-z

Mirabelli, M., Chiefari, E., Arcidiacono, B., Corigliano, D. M., Brunetti, F. S., Maggisano, V., Russo, D., Foti, D. P., and Brunetti, A., (2020). Mediterranean Diet Nutrients to Turn the Tide against Insulin Resistance and Related Diseases. Nutrients 12(4), 1066 https://doi.org/10.3390/nu12041066

Zółkiewicz, J. ˙, Marzec, A., Ruszczy´nski, M., Ruszczy´nski, R., and Feleszko, W., (2020), Postbiotics-A Step Beyond Pre-and Probiotics. Nutrients 12(8), 2189; https://doi.org/10.3390/nu12082189

Farooqui, Z., Ahmed, F., Rizwan, S., Shahid, F., Khan, A. A., and Khan, F., (2017) Protective Effect of Nigella Sativa Oil on Cisplatin Induced Nephrotoxicity and Oxidative Damage in Rat Kidney, Biomedicine and Pharmacotherapy, 85;7–15. https://doi.org/10.1016/j.biopha.2016.11.110

Song, C., Fu, B., Zhang, J., Zhao, J., Yuan, M., Peng, W., Zhang, Y., and Wu, H., (2017) Sodium Fluoride Induces Nephrotoxicity via Oxidative Stress-Regulated Mitochondrial SIRT3 Signaling Pathway, Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-00796-3

Tungsanga, S., Katavetin, P., Panpetch, W., Udompornpitak, K., Saisorn, W., Praditpornsilpa, K., Eiam-Ong, S., Tungsanga, K., Tumwasorn, S., and Leelahavanichkul, A., (2022) Lactobacillus Rhamnosus L34 Attenuates Chronic Kidney Disease Progression in a 5/6 Nephrectomy Mouse Model through the Excretion of Anti-Inflammatory Molecules,” Nephrology Dialysis Transplantation, 37(8);1429–1442. https://doi.org/10.1093/ndt/gfac032

Caroline de Oliveira Melo, N., Cuevas-Sierra, A., Arellano-Garcia, L., Portillo, M. P., Milton-Laskibar, I., and Alfredo Martinez, J., (2023) Oral Administration of Viable or Heat-Inactivated Lacticaseibacillus Rhamnosus GG Influences on Metabolic Outcomes and Gut Microbiota in Rodents Fed a High-Fat High-Fructose Diet,” Journal of Functional Foods, 109;105808. https://doi.org/10.1016/J.JFF.2023.105808

Sahin, K., Tuzcu, M., Gencoglu, H., Dogukan, A., Timurkan, M., Sahin, N., Aslan, A., and Kucuk, O., (2010) Epigallocatechin-3-Gallate Activates Nrf2/HO-1 Signaling Pathway in Cisplatin-Induced Nephrotoxicity in Rats, Life Sciences, 87(7–8);240–245. https://doi.org/10.1016/j.lfs.2010.06.014

Dai, W., Ruan, C., Zhang, Y., Wang, J., Han, J., Shao, Z., Sun, Y., and Liang, J., (2020) Bioavailability Enhancement of EGCG by Structural Modification and Nano-Delivery: A Review, Journal of Functional Foods, 65;103732. https://doi.org/10.1016/J.JFF.2019.103732

Qu, R., Jiang, C., Wu, W., Pang, B., Lei, S., Lian, Z., Shao, D., Jin, M., and Shi, J., (2019) Conversion of DON to 3-Epi-DON in Vitro and Toxicity Reduction of DON in Vivo by Lactobacillus Rhamnosus,” Food & Function, 10(5);2785–2796. https://doi.org/10.1039/C9FO00234K

Yousef, M. I., Omar, S. A. M., El-Guendi, M. I., and Abdelmegid, L. A., (2010). Potential Protective Effects of Quercetin and Curcumin on Paracetamol-Induced Histological Changes, Oxidative Stress, Impaired Liver and Kidney Functions and Haematotoxicity in Rat, Food and Chemical Toxicology, 48(11);3246–3261. https://doi.org/10.1016/j.fct.2010.08.034

Yildiz, H., Ercisli, S., Hegedus, A., Akbulut, M., Topdas, E. F., and Aliman, J., (2014) Bioactive Content and Antioxidant Characteristics of Wild (Fragaria Vesca L.) and Cultivated Strawberry (Fragaria × Ananassa Duch.) Fruits from Turkey, Journal of Applied Botany and Food Quality, 87;274–278. https://doi.org/10.5073/JABFQ.2014.087.038

Raeeszadeh, M., Rezaee, M., Akbari, A., and Khademi, N., (2022). The Comparison of the Effect of Origanum Vulgare L. Extract and Vitamin C on the Gentamycin-Induced Nephrotoxicity in Rats, Drug and Chemical Toxicology, 45(5);2031–2038. https://doi.org/10.1080/01480545.2021.1895826

Adil, M., Kandhare, A. D., Dalvi, G., Ghosh, P., Venkata, S., Raygude, K. S., and Bodhankar, S. L., (2016) Ameliorative Effect of Berberine against Gentamicin-Induced Nephrotoxicity in Rats via Attenuation of Oxidative Stress, Inflammation, Apoptosis and Mitochondrial Dysfunction, Renal Failure 38(6);996–1006. https://doi.org/10.3109/0886022X.2016.1165120

Grams, M. E., Estrella, M. M., Coresh, J., Brower, R. G., and Liu, K. D., (2011). Fluid Balance, Diuretic Use, and Mortality in Acute Kidney Injury, Clinical Journal of the American Society of Nephrology 6(5);966–973. https://doi.org/10.2215/CJN.08781010

Mansour, S. A., and Mossa, A.-T. H., (2010) Oxidative Damage, Biochemical and Histopathological Alterations in Rats Exposed to Chlorpyrifos and the Antioxidant Role of Zinc, Pesticide Biochemistry and Physiology, 96(1);14–23. https://doi.org/10.1016/j.pestbp.2009.08.008

Heerspink, H. J. L., Holtkamp, F. A., Parving, H.-H., Navis, G. J., Lewis, J. B., Ritz, E., De Graeff, P. A., and De Zeeuw, D., (2012). Moderation of Dietary Sodium Potentiates the Renal and Cardiovascular Protective Effects of Angiotensin Receptor Blockers, Kidney International, 82(3);330–337. https://doi.org/10.1038/ki.2012.74

Latha, R. C. R., and Daisy, P., (2011). Insulin-Secretagogue, Antihyperlipidemic and Other Protective Effects of Gallic Acid Isolated from Terminalia Bellerica Roxb. in Streptozotocin-Induced Diabetic Rats, Chemico-Biological Interactions, 189(1–2);112–118. https://doi.org/10.1016/j.cbi.2010.11.005

Li, Y., Li, X., Wong, Y.-S., Chen, T., Zhang, H., Liu, C., and Zheng, W., (2011). he Reversal of Cisplatin-Induced Nephrotoxicity by Selenium Nanoparticles Functionalized with 11-Mercapto-1-Undecanol by Inhibition of ROS-Mediated Apoptosis, Biomaterials, 32(34);9068–9076. https://doi.org/10.1016/j.biomaterials.2011.08.001

Xie, K., Yu, Y., Pei, Y., Hou, L., Chen, S., Xiong, L., and Wang, G., (2010) Protective Effects of Hydrogen Gas on Murine Polymicrobial Sepsis via Reducing Oxidative Stress and HMGB1 Release, Shock, 34(1);90–97. https://doi.org/10.1097/SHK.0b013e3181cdc4ae

Khan, R. A., Khan, M. R., and Sahreen, S., (2012) CCl4-Induced Hepatotoxicity: Protective Effect of Rutin on P53, CYP2E1 and the Antioxidative Status in Rat,” BMC Complementary and Alternative Medicine, 12, https://doi.org/10.1186/1472-6882-12-178

Ugur, S., Ulu, R., Dogukan, A., Gurel, A., Yigit, I. P., Gozel, N., Aygen, B., and Ilhan, N., (2015). The Renoprotective Effect of Curcumin in Cisplatin-Induced Nephrotoxicity, Renal Failure, 37(2);332–336. https://doi.org/10.3109/0886022X.2014.986005

He, L., Peng, X., Zhu, J., Liu, G., Chen, X., Tang, C., Liu, H., Liu, F., and Peng, Y., (2015). Protective Effects of Curcumin on Acute Gentamicin-Induced Nephrotoxicity in Rats, Canadian Journal of Physiology and Pharmacology, 93(4);275–282. https://doi.org/10.1139/cjpp-2014-0459

Edrees, N. E., Galal, A. A. A., Abdel Monaem, A. R., Beheiry, R. R., and Metwally, M. M. M., (2018). Curcumin Alleviates Colistin-Induced Nephrotoxicity and Neurotoxicity in Rats via Attenuation of Oxidative Stress, Inflammation and Apoptosis, Chemico-Biological Interactions, 294;56–64. https://doi.org/10.1016/j.cbi.2018.08.012

Laorodphun, P., Cherngwelling, R., Panya, A., and Arjinajarn, P., (2022) Curcumin Protects Rats against Gentamicin-Induced Nephrotoxicity by Amelioration of Oxidative Stress, Endoplasmic Reticulum Stress and Apoptosis, Pharmaceutical Biology, 60(1);491–500. https://doi.org/10.1080/13880209.2022.2037663

Benzer, F., Kandemir, F. M., Kucukler, S., Comaklı, S., and Caglayan, C., (2018) Chemoprotective Effects of Curcumin on Doxorubicin-Induced Nephrotoxicity in Wistar Rats: By Modulating Inflammatory Cytokines, Apoptosis, Oxidative Stress and Oxidative DNA Damage, Archives of Physiology and Biochemistry, 124(5);448–457. https://doi.org/10.1080/13813455.2017.1422766

Wu, S., Yu, W., Jiang, X., Huang, R., Zhang, X., Lan, J., Zhong, G., Wan, F., Tang, Z., and Hu, L., (2021). Protective Effects of Curcumin on ATO-Induced Nephrotoxicity in Ducks in Relation to Suppressed Autophagy, Apoptosis and Dyslipidemia by Regulating Oxidative Stress, Ecotoxicology and Environmental Safety, 219; https://doi.org/10.1016/j.ecoenv.2021.112350

Mahmoud, A. M., Abd El-Ghafar, O. A. M., Alzoghaibi, M. A., and Hassanein, E. H. M., (2021). Agomelatine Prevents Gentamicin Nephrotoxicity by Attenuating Oxidative Stress and TLR-4 Signaling, and Upregulating PPARγ and SIRT1, Life Sciences, 278. https://doi.org/10.1016/j.lfs.2021.119600

Kilic, U., Kilic, E., Tuzcu, Z., Tuzcu, M., Ozercan, I. H., Yilmaz, O., Sahin, F., and Sahin, K., (2013). Melatonin Suppresses Cisplatin-Induced Nephrotoxicity via Activation of Nrf-2/HO-1 Pathway, Nutrition and Metabolism, 10(1); https://doi.org/10.1186/1743-7075-10-7

Kobroob, A., Peerapanyasut, W., Chattipakorn, N., and Wongmekiat, O., (2018). Damaging Effects of Bisphenol A on the Kidney and the Protection by Melatonin: Emerging Evidences from In Vivo and In Vitro Studies. Oxidative Medicine and Cellular Longevity 2018, Article ID 3082438, 15 pages https://doi.org/10.1155/2018/3082438

Goudarzi, M., Khodayar, M. J., Hosseini Tabatabaei, S. M. T., Ghaznavi, H., Fatemi, I., and Mehrzadi, S., (2017). Pretreatment with Melatonin Protects against Cyclophosphamide-Induced Oxidative Stress and Renal Damage in Mice, Fundamental and Clinical Pharmacology, 31(6);625–635. https://doi.org/10.1111/fcp.12303

Dutta, S., Saha, S., Mahalanobish, S., Sadhukhan, P., and Sil, P. C., (2018) Melatonin Attenuates Arsenic Induced Nephropahy via the Regulation of Oxidative Stress and Inflammatory Signaling Cascades in Mice, Food and Chemical Toxicology, 118;303–316. https://doi.org/10.1016/j.fct.2018.05.032

Panpetch, W., Visitchanakun, P., Saisorn, W., Sawatpanich, A., Chatthanathon, P., Somboonna, N., Tumwasorn, S., and Leelahavanichkul, A., (2021). Lactobacillus Rhamnosus Attenuates Thai Chili Extracts Induced Gut Inflammation and Dysbiosis despite Capsaicin Bactericidal Effect against the Probiotics, a Possible Toxicity of High Dose Capsaicin, PLOS ONE, 16(12);e0261189. https://doi.org/10.1371/JOURNAL.PONE.0261189

Tsai, Y.-S., Chen, Y.-P., Lin, S.-W., Chen, Y.-L., Chen, C.-C., and Huang, G.-J., (2022). Lactobacillus Rhamnosus GKLC1 Ameliorates Cisplatin-Induced Chronic Nephrotoxicity by Inhibiting Cell Inflammation and Apoptosis. Biomedicine & Pharmacotherapy 147;112701 https://doi.org/10.1016/j.biopha.2022.112701

Hsiao, Y.-P., Chen, H.-L., Tsai, J.-N., Lin, M.-Y., Liao, J.-W., Wei, M.-S., Ko, J.-L., and Ou, C.-C., (2021). Administration of Lactobacillus Reuteri Combined with Clostridium Butyricum Attenuates Cisplatin-Induced Renal Damage by Gut Microbiota Reconstitution, Increasing Butyric Acid Production, and Suppressing Renal Inflammation, Nutrients, 13(8). https://doi.org/10.3390/nu13082792

Sahin, K., Tuzcu, M., Sahin, N., Ali, S., and Kucuk, O., (2010). Nrf2/HO-1 Signaling Pathway May Be the Prime Target for Chemoprevention of Cisplatin-Induced Nephrotoxicity by Lycopene, Food and Chemical Toxicology, 48(10);2670–2674. https://doi.org/10.1016/j.fct.2010.06.038

Sahu, B. D., Kalvala, A. K., Koneru, M., Kumar, J. M., Kuncha, M., Rachamalla, S. S., and Sistla, R., (2014). Ameliorative Effect of Fisetin on Cisplatin-Induced Nephrotoxicity in Rats via Modulation of NF-ΚB Activation and Antioxidant Defence, PLoS ONE, 9(9); https://doi.org/10.1371/journal.pone.0105070

Temel, Y., Kucukler, S., Yıldırım, S., Caglayan, C., and Kandemir, F. M., (2020). Protective Effect of Chrysin on Cyclophosphamide-Induced Hepatotoxicity and Nephrotoxicity via the Inhibition of Oxidative Stress, Inflammation, and Apoptosis, Naunyn-Schmiedeberg’s Archives of Pharmacology, 393(3);325–337. https://doi.org/10.1007/s00210-019-01741-z

Li, J., Gui, Y., Ren, J., Liu, X., Feng, Y., Zeng, Z., He, W., Yang, J., and Dai, C., (2016). Metformin Protects against Cisplatin-Induced Tubular Cell Apoptosis and Acute Kidney Injury via AMPKα-Regulated Autophagy Induction, Scientific Reports, 6. https://doi.org/10.1038/srep23975

Xing, J.-J., Hou, J.-G., Ma, Z.-N., Wang, Z., Ren, S., Wang, Y.-P., Liu, W.-C., Chen, C., and Li, W., (2019). Ginsenoside Rb3 Provides Protective Effects against Cisplatin-Induced Nephrotoxicity via Regulation of AMPK-/MTOR-Mediated Autophagy and Inhibition of Apoptosis in Vitro and in Vivo, Cell Proliferation, 52(4); https://doi.org/10.1111/cpr.12627

Noori, S., and Mahboob, T., (2010). Antioxidant Effect of Carnosine Pretreatment on Cisplatin-Induced Renal Oxidative Stress in Rats, Indian Journal of Clinical Biochemistry, 25(1);86–91. https://doi.org/10.1007/s12291-010-0018-x

Kim, J. Y., Jo, J., Leem, J., and Park, K. K., (2020). Inhibition of P300 by Garcinol Protects against Cisplatin-Induced Acute Kidney Injury through Suppression of Oxidative Stress, Inflammation, and Tubular Cell Death in Mice, Antioxidants, 9(12);1–16. https://doi.org/10.3390/antiox9121271

Gur, C., Kandemir, F. M., Caglayan, C., and Satıcı, E., (2022). Chemopreventive Effects of Hesperidin against Paclitaxel-Induced Hepatotoxicity and Nephrotoxicity via Amendment of Nrf2/HO-1 and Caspase-3/Bax/Bcl-2 Signaling Pathways, Chemico-Biological Interactions, 365. https://doi.org/10.1016/j.cbi.2022.110073

Tang, Y., Zhao, R., Pu, Q., Jiang, S., Yu, F., Yang, Z., and Han, T., (2023). Investigation of Nephrotoxicity on Mice Exposed to Polystyrene Nanoplastics and the Potential Amelioration Effects of DHA-Enriched Phosphatidylserine, Science of the Total Environment, 892 https://doi.org/10.1016/j.scitotenv.2023.164808

El-Mowafy, A. M., Al-Gayyar, M. M., Salem, H. A., El-Mesery, M. E., and Darweish, M. M., (2010). Novel Chemotherapeutic and Renal Protective Effects for the Green Tea (EGCG): Role of Oxidative Stress and Inflammatory-Cytokine Signaling, Phytomedicine, 17(14);1067–1075. https://doi.org/10.1016/j.phymed.2010.08.004

Zhang, Q., Zhang, C., Ge, J., Lv, M.-W., Talukder, M., Guo, K., Li, Y.-H., and Li, J.-L., (2020). Ameliorative Effects of Resveratrol against Cadmium-Induced Nephrotoxicity: Via Modulating Nuclear Xenobiotic Receptor Response and PINK1/Parkin-Mediated Mitophagy, Food and Function, 11(2);1856–1868. https://doi.org/10.1039/c9fo02287b

Abdul Hamid, Z., Budin, S. B., Wen Jie, N., Hamid, A., Husain, K., and Mohamed, J., (2012). Nephroprotective Effects of Zingiber Zerumbet Smith Ethyl Acetate Extract against Paracetamol-Induced Nephrotoxicity and Oxidative Stress in Rats, Journal of Zhejiang University: Science B, 13(3);176–185. https://doi.org/10.1631/jzus.B1100133

Mahmoud, A. M., Hussein, O. E., Abd El-Twab, S. M., and Hozayen, W. G., (2019). Ferulic Acid Protects against Methotrexate Nephrotoxicity: Via Activation of Nrf2/ARE/HO-1 Signaling and PPARγ, and Suppression of NF-ΚB/NLRP3 Inflammasome Axis, Food and Function, 10(8);4593–4607. https://doi.org/10.1039/c9fo00114j

Albarakati, A. J. A., Baty, R. S., Aljoudi, A. M., Habotta, O. A., Elmahallawy, E. K., Kassab, R. B., and Abdel Moneim, A. E., (2020). Luteolin Protects against Lead Acetate-Induced Nephrotoxicity through Antioxidant, Anti-Inflammatory, Anti-Apoptotic, and Nrf2/HO-1 Signaling Pathways Molecular Biology Reports, 47(4);2591–2603. https://doi.org/10.1007/s11033-020-05346-1

Elsherbiny, N. M., and El-Sherbiny, M., (2014). Thymoquinone Attenuates Doxorubicin-Induced Nephrotoxicity in Rats: Role of Nrf2 and NOX4, Chemico-Biological Interactions, 223;102–108. https://doi.org/10.1016/j.cbi.2014.09.015

Mohamed, M. E., Abduldaium, Y. S., and Younis, N. S., (2020). Ameliorative Effect of Linalool in Cisplatin-Induced Nephrotoxicity: The Role of HMGB1/TLR4/NF-ΚB and NRF2/HO1 Pathways, Biomolecules, 10(11);1–19. https://doi.org/10.3390/biom10111488

Jin, W., Xue, Y., Xue, Y., Han, X., Song, Q., Zhang, J., Li, Z., Cheng, J., Guan, S., Sun, S., and Chu, L., (2020). Tannic Acid Ameliorates Arsenic Trioxide-Induced Nephrotoxicity, Contribution of NF-ΚB and Nrf2 Pathways, Biomedicine and Pharmacotherapy, 126. https://doi.org/10.1016/j.biopha.2020.110047

Turk, E., Kandemir, F. M., Yildirim, S., Caglayan, C., Kucukler, S., and Kuzu, M., (2019) Protective Effect of Hesperidin on Sodium Arsenite-Induced Nephrotoxicity and Hepatotoxicity in Rats, Biological Trace Element Research, 189(1);95–108. https://doi.org/10.1007/s12011-018-1443-6

Dieterle, F., Perentes, E., Cordier, A., Roth, D. R., Verdes, P., Grenet, O., Pantano, S., Moulin, P., Wahl, D., Mahl, A., End, P., Staedtler, F., Legay, F., Carl, K., Laurie, D., Chibout, S. D., Vonderscher, J., and Maurer, G., (2010). Urinary Clusterin, Cystatin C, Β2-Microglobulin and Total Protein as Markers to Detect Drug-Induced Kidney Injury, Nature Biotechnology, 28(5);463–469. https://doi.org/10.1038/nbt.1622

Downloads

Published

2024-12-27

How to Cite

ALTINKAYNAK, Y., Akcan ALTINKAYNAK, B., & SERAFANI, M. (2024). Trends in Research on The Effects of Nutritional Supplements Against Nephrotoxicity; A Bibliometric Study. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.389

Issue

Section

Research Article