Power – Efficient Gaussian Filter Architecture Utilizing Approximate 4:2 Compressors for Edge Detection

Authors

  • V Bharathi Devarakonda Department of Electronics and Communication Engineering, Jawaharlal Nehru Technological University Gurajada Vizianagaram (JNTU-GV), Vizianagaram, Andhra Pradesh, India
  • K Babulu
  • M Hema

DOI:

https://doi.org/10.22399/ijcesen.4092

Keywords:

Approximate Compressors, Gaussian Filter, Low Power, Image Processing, Edge Detection

Abstract

Nowadays, approximate computing is an emerging trend widely applied in image processing, signal processing, and computer vision applications. Approximation is suitable for applications which are error tolerant. In this work, approximate computing is used in the Gaussian filtering stage of edge detection. In computer vision applications like medical imaging, transportation etc., Edge detection plays a crucial role.  In edge detection algorithms, the Gaussian filtering block is a fundamental module. This block involves power-consuming addition operations, resulting in increased computational complexity, power consumption, and delay. To address these trade-offs, imprecise computation is applied in the Gaussian filter module. The aim of the work is to reduce computational complexity, reduction in usage of power and delay in the Gaussian filtering module using an approximate compressor-based architecture. The proposed Gaussian filter is designed using newly developed approximate compressors. Simulation outcome indicates that the Gaussian filter implemented with proposed newly developed compressors achieves decline in power and delay compared to exact and existing implementations in literature. Error analysis and Edge Detection is performed using different metrics in MATLAB, and the results demonstrate good PSNR values for the proposed compressors, confirming their suitability for edge detection in image processing applications.

References

[1]S. Guturu, A. K. Uppugunduru, A. Sharma, and S. E. Ahmed. (2024). A Power-Efficient Gaussian Filter Architecture Using Adder Compressors for Edge Detection Application. Circuits Syst Signal Process, 66(6): 2137–2150. DOI: 10.1007/s00034-024-02894-w.

[2]L. B. Soares, M. M. A. da Rosa, C. M. Diniz, E. A. C. da Costa, and S. Bampi. (2019). Design Methodology to Explore Hybrid Approximate Adders for Energy-Efficient Image and Video Processing Accelerators. IEEE Transactions on Circuits and Systems I: Regular Papers, DOI: 10.1109/TCSI.2019.2892588.

[3]I. Qiqieh, R. Shafik, G. Tarawneh, D. Sokolov, S. Das, and A. Yakovlev (2018). Significance-Driven Logic Compression for Energy-Efficient Multiplier Design. IEEE J Emerg Sel Top Circuits Syst 8(3) : 417–430, DOI: 10.1109/JETCAS.2018.2846410.

[4]L. H. Krishna, J. B. Rao, S. Ayesha, S. Veeramachaneni, and S. Noor Mahammad. (2021). Energy Efficient Approximate Multiplier Design for Image/Video Processing Applications. IEEE International Symposium on Smart Electronic Systems (iSES), IEEE, 8(3):417–430 DOI: 10.1109/iSES52644.2021.00056.

[5]A. K. P, J. N, M. R. Barusu, and M. D.(2023). Approximate Compressor for Efficient Multiplication in Image Processing Applications. International Conference on Next Generation Electronics (NEleX), 1–6 DOI: 10.1109/NEleX59773.2023.10421541.

[6]A. G. M. Strollo, D. De Caro, E. Napoli, N. Petra, and G. Di Meo.(2020). Low-Power Approximate Multiplier with Error Recovery using a New Approximate 4-2 Compressor IEEE International Symposium on Circuits and Systems (ISCAS) :1– 4 DOI: 10.1109/ISCAS45731.2020.9180767.

[7]Jain, S., & Singh, R. (2021). Implementation of approximate computing circuits for error-tolerant image processing applications. International Conference on Artificial Intelligence and Smart Systems (ICAIS), 1465–1469. IEEE. DOI:10.1109/ICAIS50930.2021.9395983

[8]Sadeghi, A., Rasheedi, R., Partin-Vaisband, I., & Pal, D. (2024). Energy efficient compact approximate multiplier for error-resilient applications. IEEE Transactions on Circuits and Systems II: Express Briefs,71(12),4989–4993. DOI:10.1109/TCSII.2024.3437235

[9]Venkatachalam, S., & Ko, S.-B. (2017). Design of power and area efficient approximate multipliers. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(5), 1782–1786. DOI:10.1109/TVLSI.2016.2643639

[10]Manikantta Reddy, K., Vasantha, M. H., Nithin Kumar, Y. B., & Dwivedi, D. (2019). Design and analysis of multiplier using approximate 4-2 compressor. AEU - International Journal of Electronics and Communications, 107, 89–97. DOI:10.1016/j.aeue.2019.05.02

[11]Kong, T., & Li, S. (2021). Design and analysis of approximate 4-2 compressors for high-accuracy multipliers. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 29(10), 1771–1781. DOI:10.1109/TVLSI.2021.3104145.

[12]Anil Kumar, U., Chatterjee, S. K., & Ahmed, S. E. (2022). Low-power compressor-based approximate multipliers with error correcting module. IEEE Embedded Systems Letters, 14(2), 59–62. DOI:10.1109/LES.2021.3113005.

[13]Strollo, A. G. M., Napoli, E., De Caro, D., Petra, N., & Di Meo, G. (2020). Comparison and extension of approximate 4-2 compressors for low-power approximate multipliers. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(9), 3021–3034. DOI:10.1109/TCSI.2020.2988353.

[14]Pei, H., Yi, X., Zhou, H., & He, Y. (2021). Design of ultra-low power consumption approximate 4-2 compressors based on the compensation characteristic. IEEE Transactions on Circuits and Systems II: Express Briefs, 68(1), 461–465. DOI:10.1109/TCSII.2020.3004929.

[15]Zhang, M., Nishizawa, S., & Kimura, S. (2023). Area efficient approximate 4-2 compressor and probability-based error adjustment for approximate multiplier. IEEE Transactions on Circuits and Systems II: Express Briefs, 70(5), 1714–1718. DOI:10.1109/TCSII.2023.3257852.

[16]Krishna, L. H., Sk, A., Rao, J. B., Veeramachaneni, S., & Sk, N. M. (2024). Energy-efficient approximate multiplier design with lesser error rate using the probability-based approximate 4:2 compressor. IEEE Embedded Systems Letters, 16(2), 134–137. DOI:10.1109/LES.2023.3280199

[17]Rizwan, M. A., Waris, H., & Qadri, M. Y. (2022). Approximate multipliers based on low-power 4:2 compressors for error-tolerant applications. 19th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 432–437. IEEE. DOI:10.1109/IBCAST54850.2022.9990566.

[18]Liu, W., & Zhang, H. (2023). Efficient approximate 4-2 compressors and error compensation strategies for approximate multipliers. 6th International Conference on Electronics and Electrical Engineering Technology (EEET), 147–154. IEEE. DOI:10.1109/EEET61723.2023.00014.

[19]Zanandrea, V., & Meinhardt, C. (2023). New modified 4:2 approximate compressors for low-power applications. 36th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems Design (SBCCI), 1–6. IEEE. DOI:10.1109/SBCCI60457.2023.10261949.

[20]Lopes, R., Antonietti, L., Rosa, M. M. A., Costa, E., Soares, R., & Bampi, S. (2023). New energy-efficient 3-2 and 4-2 approximate adder compressors topologies. 30th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 1–4. IEEE. DOI:10.1109/ICECS58634.2023.10382943.

[21]Koshe, S. S., Rajgure, Y., & Sridevi, S. A. (2022). Novel implementation of low power and high performance 4-2 compressors for approximate multipliers. International Conference on Futuristic Technologies (INCOFT), 1–5. IEEE. DOI:10.1109/INCOFT55651.2022.10094489.

[22]Rai, S., Guntuku, D., Gupta, S., Savio, M. M. D., & Verma, M. (2023). Design of low power approximate multiplier based on compressors for multimedia application. International Conference on Recent Advances in Electrical, Electronics, Ubiquitous Communication, and Computational Intelligence (RAEEUCCI), 1–6. IEEE. DOI:10.1109/RAEEUCCI57140.2023.10134205

Downloads

Published

2025-11-10

How to Cite

V Bharathi Devarakonda, K Babulu, & M Hema. (2025). Power – Efficient Gaussian Filter Architecture Utilizing Approximate 4:2 Compressors for Edge Detection. International Journal of Computational and Experimental Science and Engineering, 11(4). https://doi.org/10.22399/ijcesen.4092

Issue

Section

Research Article