Optimal Speed Control of Hybrid Stepper Motors through Integrating PID Tuning with LFD-NM Algorithm
DOI:
https://doi.org/10.22399/ijcesen.489Keywords:
PID Controller , optimization, Levy Flight Distribution MethodAbstract
In order to regulate the speed of hybrid stepper motors (HSM), this work presents an optimally tuned proportional-integral-derivative (PID) controller. The combination of algorithms known as the combined Levy flight distribution and Nelder Mead (LFD-NM) method essentially considers it unique to tune the PID. The accurate local search properties of the Nelder Mead (NM) technique are combined with the exploratory capabilities of the Levy flight distribution (LFD) algorithm in this method. A combination LFD-NM approach improves PID controller parameter optimisation efficiency by striking a balance between exploration and exploitation. The efficacy of the suggested method is validated by comparative simulations against the original LFD algorithm and many metaheuristic algorithms including cuckoo search and genetic algorithms. The assessment of performance includes statistical testing, robustness analysis, management of load disturbances, evaluation of energy efficiency, assessment of transient and frequency responses, and consideration of control signal constraints. Additional experimental verification confirms that a recommended LFD-NM-based PID controller is successful. Analyses conducted in comparison with the latest PID controllers demonstrate its exceptional efficacy in attaining ideal control over the speed of hybrid stepper motors (HSM)
References
Boys, Dunlop (1979). Economical stepper motors for speed-control applications. IEE Journal on Electric Power Applications, 2(1), pp. 27-28. DOI: https://doi.org/10.1049/ij-epa.1979.0004 DOI: https://doi.org/10.1049/ij-epa.1979.0004
Hasanien (2011). FPGA implementation of adaptive ANN controller for speed regulation of permanent magnet stepper motor drives. Energy Conversion and Management, 52(2), pp. 1252-1257. DOI: https://doi.org/10.1016/j.enconman.2010.09.021 DOI: https://doi.org/10.1016/j.enconman.2010.09.021
Butcher, Masi, Olivieri (2012). An extended hybrid stepper motor electrical model for sensorless drives. 2012 IEEE International on Instrumentation and Measurement Technology Conference (I2MTC), pp. 781-786. DOI: https://doi.org/10.1109/I2MTC.2012.6229555 DOI: https://doi.org/10.1109/I2MTC.2012.6229555
Melkote, Khorrami (1997). A unified approach to adaptive nonlinear control of stepper motors. Proceedings of the 36th IEEE Conference on Decision and Control, 3, pp. 2495-2500. DOI: https://doi.org/10.1109/CDC.1997.657531 DOI: https://doi.org/10.1109/CDC.1997.657531
Condit, Jones (2004). Stepping motors fundamentals. Ed: Microchip Application Note: AN907.
Bendjedia, Ait-Amirat, Walther, Berthon (2007). Sensorless control of hybrid stepper motor. 2007 European Conference on Power Electronics and Applications, pp. 1-10. DOI: https://doi.org/10.1109/EPE.2007.4417444 DOI: https://doi.org/10.1109/EPE.2007.4417444
Ellis (1971). Analysis and control of the permanent magnet stepper motor. Radio and Electronic Engineer, 41, pp. 302-308. DOI: https://doi.org/10.1049/ree.1971.0091 DOI: https://doi.org/10.1049/ree.1971.0091
Tsui, Cheung, Yuen (2009). Novel Modeling and Damping Technique for Hybrid Stepper Motor. IEEE Transactions on Industrial Electronics, 56(1), pp. 202-211. DOI: https://doi.org/10.1109/TIE.2008.2008791 DOI: https://doi.org/10.1109/TIE.2008.2008791
Tzung-Cheng, Yung-Chun (2008). High performance algorithm realization on FPGA for stepper motor controller. 2008 SICE Annual Conference, pp. 1390-1395. DOI: https://doi.org/10.1109/SICE.2008.4654875 DOI: https://doi.org/10.1109/SICE.2008.4654875
Hekimoglu (2019). Optimal tuning of fractional order PID controller for DC motor speed control via chaotic atom search optimization algorithm. IEEE Access, 7, pp. 38100–38114. DOI: https://doi.org/10.1109/ACCESS.2019.2905961 DOI: https://doi.org/10.1109/ACCESS.2019.2905961
Rodrıguez-Molina, Villarreal-Cervantes, Aldape-Perez (2019). An adaptive control study for the DC motor using meta- heuristic algorithms. IFAC-PapersOnLine, 23(3), pp. 889–906. DOI: https://doi.org/10.1016/j.ifacol.2017.08.2164 DOI: https://doi.org/10.1007/s00500-017-2797-y
Pal, Mukherjee, Bhakta (2020). Design of an intelligent heuristic algorithm-based optimised fuzzy controller for speed control of a separately excited DC motor. Australian Journal of Electrical and Electronics Engineering, 17(3), pp. 173-182. DOI: https://doi.org/10.1080/1448837X.2020.1804678 DOI: https://doi.org/10.1080/1448837X.2020.1804678
Lotfy, Kaveh, Mosavi, Rahmati (2020). An enhanced fuzzy controller based on improved genetic algorithm for speed control of DC motors. Analog Integrated Circuits and Signal Processing, 105, pp. 141–155. DOI: https://doi.org/10.1007/s10470-020-01599-9 DOI: https://doi.org/10.1007/s10470-020-01599-9
Premkumar, Manikandan (2015). Speed control of brush- less DC motor using bat algorithm optimized adaptive neuro-fuzzy inference system. Applied Soft Computing Journal, 32, pp. 403–419. DOI: https://doi.org/10.1016/j.asoc.2015.04.014 DOI: https://doi.org/10.1016/j.asoc.2015.04.014
Ahmed, Rajoriya (2017). A hybrid of sliding mode control and fuzzy logic control using a fuzzy supervisory switched system for DC motor speed control. Turkish Journal of Electrical Engineering & Computer Sciences, 25(3), p. 30. DOI: https://doi.org/10.3906/elk-1511-213 DOI: https://doi.org/10.3906/elk-1511-213
Bhatt, Parmar, Gupta, Sikander (2019). Application of stochastic fractal search in approximation and control of LTI systems. Microsystem Technologies, 25(1), pp. 105–114. DOI: https://doi.org/10.1007/s00542-018-3939-6 DOI: https://doi.org/10.1007/s00542-018-3939-6
Puangdownreong, Nawikavatan, Thammarat (2016). Optimal design of I-PD controller for DC motor speed control system by cuckoo search. Procedia Computer Science, 86, pp. 83–86. DOI: https://doi.org/10.1016/j.procs.2016.05.021 DOI: https://doi.org/10.1016/j.procs.2016.05.021
Akbari-Hasanjani, Javadi, Sabbaghi-Nadooshan (2015). DC motor speed control by self-tuning fuzzy PID algorithm. Transactions of the Institute of Measurement and Control, 37(2), pp. 164–176. DOI: https://doi.org/10.1177/0142331214535619 DOI: https://doi.org/10.1177/0142331214535619
Kalpana K, Paulchamy B ,Stephen Jeswinde Nuagah, Piyush Kumar Shukla.,(2023), Design of a high‐performance advanced phase locked loop with high stability external loop filter, IET Circuits Devices Systems, 17(1);1– 12. DOI: https://doi.org/10.1049/cds2.12130
Kumar, Chatterjee Shantanu Shah, Saha, Saibal Chatterjee (2017). On comparison of tuning method of FOPID controller for controlling field con- trolled DC servo motor. Cogent Engineering, 4(1). DOI: https://doi.org/10.1080/23311916.2017.1357875 DOI: https://doi.org/10.1080/23311916.2017.1357875
Mishra, Singh, Yadav (2020). Design of optimal PID controller for varied system using teaching–learning-based optimization. Advances in Computing and Intelligent Systems, Springer, pp. 153–163. DOI: https://doi.org/10.1007/978-981-15-0222-4_13 DOI: https://doi.org/10.1007/978-981-15-0222-4_13
Pongfai, Su, Zhang, Assawinchaichote (2020). A novel optimal PID controller autotuning design based on the SLP algorithm. Expert Systems, 37(2). DOI: https://doi.org/10.1111/exsy.12489 DOI: https://doi.org/10.1111/exsy.12489
Hekimoglu (2019). Speed control of DC motor using PID controller tuned via kidney-inspired algorithm. BEU Journal of Science, 8(2), pp. 652–663. DOI: https://doi.org/10.17798/bitlisfen.496782 DOI: https://doi.org/10.17798/bitlisfen.496782
Mohamed, Abubakr, Alamin, Hassan (2020). Modified WCA-based adaptive control approach using balloon effect: Electrical systems applications. IEEE Access, 8, pp. 60877–60889. DOI: https://doi.org/10.1109/ACCESS.2020.2982510 DOI: https://doi.org/10.1109/ACCESS.2020.2982510
Sabir, Khan (2014). Optimal design of PID controller for the speed control of DC motor by using metaheuristic techniques. Gastaldo P (ed) Advances in Artificial Neural Systems, Hindawi Publishing Corporation, pp. 1–8. DOI: https://doi.org/10.1155/2014/126317 DOI: https://doi.org/10.1155/2014/126317
Ekinci, Izci, Hekimoglu (2020). PID speed control of DC motor using Harris hawks optimization algorithm. 2020 IEEE International Conference on Electrical, Communication, and Computer Engineering (ICECCE), pp. 1–6. DOI: https://doi.org/10.1109/ICECCE49384.2020.9179308 DOI: https://doi.org/10.1109/ICECCE49384.2020.9179308
Serradilla, Canas, Naranjo (2020). Optimization of the energy consumption of electric motors through metaheuristics and PID controllers. Electronics, 9(11), p. 1842. DOI: https://doi.org/10.3390/electronics9111842 DOI: https://doi.org/10.3390/electronics9111842
Duman, Maden, Guvenxc (2011). Determination of the PID controller parameters for speed and position control of DC motor using gravitational search algorithm. ELECO 2011 - 7th International Conference on Electrical and Electronics Engineering, pp. I-225–I-229.
Potnuru, Alice Mary, Sai Babu (2019). Experimental implementation of flower pollination algorithm for speed controller of a BLDC motor. Ain Shams Engineering Journal, 10(2), pp. 287–295. DOI: https://doi.org/10.1016/j.asej.2018.07.005 DOI: https://doi.org/10.1016/j.asej.2018.07.005
Bhatnagar, Gupta (2018). Application of grey wolf optimization in optimal control of DC motor and robustness analysis. Skit Research Journal, 8(1), pp. 19–25. DOI: https://doi.org/10.47904/IJSKIT.8.1.2018.19-25
Khalilpour, Razmjooy, Moallem (2011). Optimal control of DC motor using invasive weed optimization (IWO) algorithm. Majlesi Conference on Electrical Engineering.
El-Deen, Hakim Mahmoud, El-Sawi (2015). Optimal PID tuning for DC motor speed controller based on genetic algorithm. International Review of Automatic Control, 8(1), pp. 80–85. DOI: https://doi.org/10.15866/ireaco.v8i1.4839 DOI: https://doi.org/10.15866/ireaco.v8i1.4839
Khanam, Parmar (2017). Application of SFS algorithm in control of DC motor and comparative analysis. 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics, UPCON 2017, pp. 256–261. DOI: https://doi.org/10.1109/UPCON.2017.8251057 DOI: https://doi.org/10.1109/UPCON.2017.8251057
Kouassi, Zhang, Mbyamm Kiki, Ouattara (2020). Speed control of brushless de motor using ant colony optimization. IOP Conference Series: Earth and Environmental Science, 431(1). DOI: https://doi.org/10.1088/1755-1315/431/1/012022 DOI: https://doi.org/10.1088/1755-1315/431/1/012022
Agarwal, Parmar, Gupta (2018). Comparative analysis of PID controller for speed control of DC motor with intelligent optimization algorithms. Proceedings - IEEE 2018 International Conference on Advances in Computing, Communication Control and Networking, ICACCCN 2018, pp. 273–277. DOI: https://doi.org/10.1109/ICACCCN.2018.8748475 DOI: https://doi.org/10.1109/ICACCCN.2018.8748475
Ekinci, Hekimoglu, Demiroren, Eker (2019). Speed control of DC motor using improved sine cosine algorithm based PID controller. 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT 2019), pp. 1–7. DOI: https://doi.org/10.1109/ISMSIT.2019.8932907 DOI: https://doi.org/10.1109/ISMSIT.2019.8932907
Izci, Ekinci (2021). Comparative performance analysis of slime mould algorithm for efficient design of proportional–integral– derivative controller. Electrica, 21(1), pp. 151–159. DOI: https://doi.org/10.5152/electrica.2021.20077 DOI: https://doi.org/10.5152/electrica.2021.20077
Eker, Kayri, Ekinci, Izci (2021). A new fusion of ASO with SA algorithm and its applications to MLP training and DC motor speed control. Arabian Journal for Science and Engineering, 46, pp. 3889-3911. DOI: https://doi.org/10.1007/s13369-020-05228-5 DOI: https://doi.org/10.1007/s13369-020-05228-5
Wolpert, Macready (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), pp.67–82. DOI: https://doi.org/10.1109/4235.585893 DOI: https://doi.org/10.1109/4235.585893
Houssein, Saad, Hashim, Shaban, Hassaballah (2020). Levy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems. Engineering Applications of Artificial Intelligence, 94, p. 103731. DOI: https://doi.org/10.1016/j.engappai.2020.103731 DOI: https://doi.org/10.1016/j.engappai.2020.103731
Nelder, Mead (1965). A simplex method for function minimization. The Computer Journal, 7(4), pp. 308–313. DOI: https://doi.org/10.1093/COMJNL%2F7.4.308 DOI: https://doi.org/10.1093/comjnl/7.4.308
Izci, Ekinci, Orenc, et al. (2020). Improved artificial electric field algorithm using Nelder Mead simplex method for optimization problems. 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp. 1–5. DOI: https://doi.org/10.1109/ISMSIT50672.2020.9255255 DOI: https://doi.org/10.1109/ISMSIT50672.2020.9255255
Lagarias, Reeds, Wright, Paul (1998). Convergence properties of the Nelder Mead simplex method in low dimensions. SIAM Journal on Optimization, 9(1). DOI: https://doi.org/10.1137/S1052623496303470 DOI: https://doi.org/10.1137/S1052623496303470
Xu, Wang, Liu (2018). Parameter estimation for chaotic systems via a hybrid flower pollination algorithm. Neural Computing and Applications, 30(8), pp. 2607–2623. DOI: https://doi.org/10.1007/s00521-017-2890-2 DOI: https://doi.org/10.1007/s00521-017-2890-2
Xu, Wang (2017). Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm. Energy Conversion and Management, 144, pp. 53–68. DOI: https://doi.org/10.1016/j.enconman.2017.04.042 DOI: https://doi.org/10.1016/j.enconman.2017.04.042
Xu, Wang, Wang (2019). Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder Mead simplex method. Energy, 173, pp. 457–467. DOI: https://doi.org/10.1016/j.energy.2019.02.106 DOI: https://doi.org/10.1016/j.energy.2019.02.106
Fakhouri, Hudaib, Sleit (2020). Hybrid particle swarm optimization with sine cosine algorithm and Nelder–Mead simplex for solving engineering design problems. Arabian Journal for Science and Engineering, 45(4), pp. 3091–3109. DOI: https://doi.org/10.1007/s13369-019-04285-9 DOI: https://doi.org/10.1007/s13369-019-04285-9
Yildiz (2019). A novel hybrid whale–Nelder–Mead algorithm for optimization of design and manufacturing problems. The International Journal of Advanced Manufacturing Technology, 105(12), pp. 5091–5104. DOI: https://doi.org/10.1007/s00170-019-04532-1 DOI: https://doi.org/10.1007/s00170-019-04532-1
Blondin, Sanchis, Sicard, Herrero (2018). New optimal controller tuning method for an AVR system using a simplified ant colony optimization with a new constrained Nelder–Mead algorithm. Applied Soft Computing, 62, pp. 216–229. DOI: https://doi.org/10.1016/j.asoc.2017.10.007 DOI: https://doi.org/10.1016/j.asoc.2017.10.007
Chen, Yu (2020). A hybrid ant lion optimizer with improved Nelder–Mead algorithm for structural damage detection by improving weighted trace lasso regularization. Advances in Structural Engineering, 23(3). DOI: https://doi.org/10.1177/1369433219872434 DOI: https://doi.org/10.1177/1369433219872434
Rizk-Allah, Hassanien (2020). A hybrid Harris hawks- Nelder Mead optimization for practical nonlinear ordinary differential equations. Evolutionary Intelligence, 15, pp. 141–165. DOI: https://doi.org/10.1007/s12065- 020-00497-3 DOI: https://doi.org/10.1007/s12065-020-00497-3
Singh, Elaziz, Xiong (2018). Modified spider monkey optimization based on Nelder–Mead method for global optimization. Expert Systems with Applications, 110, pp. 264–289. DOI: https://doi.org/10.1016/j.eswa.2018.05.040 DOI: https://doi.org/10.1016/j.eswa.2018.05.040
Xu, Yan (2019). Hybrid Nelder–Mead algorithm and dragon- fly algorithm for function optimization and the training of a multilayer perceptron. Arabian Journal for Science and Engineering, 44(4), pp. 3473–3487. DOI: https://doi.org/10.1007/s13369-018-3536-0 DOI: https://doi.org/10.1007/s13369-018-3536-0
Yıldız , Betul Sultan Yıldız , Sadiq Sait , Sujin Bureerat, Nantiwat Pholdee (2019). A new hybrid Harris hawks-Nelder Mead optimization algorithm for solving design and manufacturing problems. Materials Testing, 61(8), pp. 735–743. DOI: https://doi.org/10.3139/120.111378 DOI: https://doi.org/10.3139/120.111378
Zhang, Heidari, Wang, Zhang, Chen, Chengye (2020). Orthogonal Nelder Mead moth flame method for parameters identification of photo- voltaic modules. Energy Conversion and Management, 211, p. 112764. DOI: https://doi.org/10.1016/j.enconman.2020.112764 DOI: https://doi.org/10.1016/j.enconman.2020.112764
Gaing (2004). A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Transactions on Energy Conversion, 19(2), pp. 384–391. DOI: https://doi.org/10.1109/TEC.2003.821821 DOI: https://doi.org/10.1109/TEC.2003.821821
Ogata (2010). Modern Control Engineering. 5th Ed. New Jersey: Prentice-Hall.
Yang, Deb (2009). Cuckoo search via Levy flights. NABIC 2009 - Proceedings 2009 World Congress on Nature and Biologically Inspired Computing, pp. 210–214. DOI: https://doi.org/10.1109/NABIC.2009.5393690 DOI: https://doi.org/10.1109/NABIC.2009.5393690
Holland (1992). Genetic algorithms. Scientific American, 267(1), pp. 66-73. DOI: https://doi.org/10.1038/scientificamerican0792-66
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Computational and Experimental Science and Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.