Computer Aided Based Performance Analysis of Glioblastoma Tumor Detection Methods using UNET-CNN
DOI:
https://doi.org/10.22399/ijcesen.515Keywords:
brain, Tumors, UNET-CNN, Multi level transformAbstract
Brain tumors are the life killing and threatening disease which affects all age groups around the world. The timely detection and followed by the perspective treatments saves the human life. The tumor regions in brain are detected and segmented using UNET-CNN architecture in this paper. During training process of the proposed work, both Glioblastoma and Healthy brain Magnetic Resonance Imaging (MRI) is preprocessed and then multi level transform is applied on the preprocessed image. The features are further computed from the transformed coefficients and these features are trained by UNET-CNN architecture to obtain trained vectors. During testing process of the proposed work, the test brain MRI image is preprocessed and then decomposed coefficients are obtained by multi level transform. Features are computed from these decomposed coefficients and they are classified using UNET-CNN architecture with the trained vectors. The simulation results of the developed methodology are compared with similar studies on both BRATS 2017 and BRATS 2018 datasets
References
Tiwari A, Srivastava S, Pant M (2020) Brain tumor segmentation and classification from magnetic resonance images: review of selected methods from 2014 to 2019. Pattern Recogn Lett. 131:244–260. DOI: https://doi.org/10.1016/j.patrec.2019.11.020
Talo M, Baloglu UB, Yıldırım Ö, Rajendra Acharya U (2019) Application of deep transfer learning for automated brain abnormality classification using MR images. Cogn Syst Res 54(12);176–188. DOI: https://doi.org/10.1016/j.cogsys.2018.12.007
Shirazi AZ, Fornaciari E, McDonnell MD, Yaghoobi M, Cevallos Y, Tello-Oquendo L, Inca D, Gomez GA (2020) The application of deep convolutional neural networks to brain cancer images: A survey. J Personal Med 10(4):1–27. DOI: https://doi.org/10.3390/jpm10040224
Sajjad M, Khan S, Muhammad K, Wu W, Ullah A, Baik SW (2019) Multi-grade brain tumor classification using deep CNN with extensive data augmentation. J Comput Sci 30:174–182. DOI: https://doi.org/10.1016/j.jocs.2018.12.003
Mehrotra R, Ansari MA, Agrawal R, Anand RS (2020) A Transfer learning approach for AI-based classification of brain tumors. Mach Learn Appl 2(9):1–12. DOI: https://doi.org/10.1016/j.mlwa.2020.100003
Khan HA, Jue W, Mushtaq M, Mushtaq MU (2020) Brain tumor classification in MRI image using convolutional neural network. Math Biosci Eng 17(5):6203–6216. DOI: https://doi.org/10.3934/mbe.2020328
Ayadi W, Elhamzi W, Charfi I, Atri M (2021) Deep CNN for brain tumor classification. Neural Process Lett 53(1):671–700. DOI: https://doi.org/10.1007/s11063-020-10398-2
Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. DOI: https://doi.org/10.1007/978-3-319-24574-4_28
Antonelli, M. et al. (2019). GAS: A genetic atlas selection strategy in multi-atlas segmentation framework. Med. Image Anal. 52, 97–108. DOI: https://doi.org/10.1016/j.media.2018.11.007
Long, J.; Shelhamer, E.; Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. DOI: https://doi.org/10.1109/CVPR.2015.7298965
Mobeen Rehman, SeungBin Cho, Jee Hong Kim, and Kil To Chong, (2020). BU-Net: Brain Tumor Segmentation Using Modified U-Net Architecture, Electronics, 9(2203);1-12. DOI: https://doi.org/10.3390/electronics9122203
Kermi, A.; Mahmoudi, I.; Khadir, M.T. (2018). Deep convolutional neural networks using U-Net for automatic brain tumor segmentation in multimodal MRI volumes. In Proceedings of the International MICCAI Brainlesion Workshop, Granada, Spain, 16 September 2018; pp. 37–48. DOI: https://doi.org/10.1007/978-3-030-11726-9_4
Albiol, A.; Albiol, A.; Albiol, F. (2018). Extending 2D deep learning architectures to 3D image segmentation problems. In Proceedings of the International MICCAI Brainlesion Workshop, Granada, Spain, 16 September pp. 73–82. DOI: https://doi.org/10.1007/978-3-030-11726-9_7
Hu, K.; Gan, Q.; Zhang, Y.; Deng, S.; Xiao, F.; Huang, W.; Cao, C.; Gao, X. (2019). Brain tumor segmentation using multi-cascaded convolutional neural networks and conditional random field. IEEE Access 7; 92615–92629. DOI: https://doi.org/10.1109/ACCESS.2019.2927433
Dong, H.; Yang, G.; Liu, F.; Mo, Y.; Guo, Y. (2017). Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. In Proceedings of the Annual Conference on Medical Image Understanding and Analysis, Southampton, UK, 9–11 July 2017; pp. 506–517. DOI: https://doi.org/10.1007/978-3-319-60964-5_44
Havaei, M.; Davy, A.; Warde-Farley, D.; Biard, A.; Courville, A.; Bengio, Y.; Pal, C.; Jodoin, P.M.; Larochelle, H. (2017). Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31. DOI: https://doi.org/10.1016/j.media.2016.05.004
Li, H.; Li, A.; Wang, M. (2019). A novel end-to-end brain tumor segmentation method using improved fully convolutional networks. Comput. Biol. Med, 108;150–160. DOI: https://doi.org/10.1016/j.compbiomed.2019.03.014
Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: (2017). A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39;2481–2495. DOI: https://doi.org/10.1109/TPAMI.2016.2644615
Irmak, E. (2021). Multi-Classification of Brain Tumor MRI Images Using Deep Convolutional Neural Network with Fully Optimized Framework. Iran J Sci Technol Trans Electr Eng 45; 1015–1036 DOI: https://doi.org/10.1007/s40998-021-00426-9
https://www.med.upenn.edu/sbia/brats2017/data.html
https://www.med.upenn.edu/sbia/brats2018/data.html
Muhammad Arif, F. Ajesh, Shermin Shamsudheen, Oana Geman, Diana Izdrui, Dragos Vicoveanu, (2022). Brain Tumor Detection and Classification by MRI Using Biologically Inspired Orthogonal Wavelet Transform and Deep Learning Techniques, Journal of Healthcare Engineering, 2022;2693621. DOI: https://doi.org/10.1155/2022/2693621
M. Arif and G. Wang, (2020). Fast curvelet transform through genetic algorithm for multimodal medical image fusion, Soft Computing, 24;1815–1836. DOI: https://doi.org/10.1007/s00500-019-04011-5
D. G. Glan and S. S. Kumar, (2018). Brain tumor detection and segmentation using a wrapper based genetic algorithm for optimized feature set, Cluster Computing, 22(1);13369–13380. DOI: https://doi.org/10.1007/s10586-018-1914-8
M. Angulakshmi and G. G. Lakshmi Priya, (2018). Brain tumor segmentation from MRI using superpixels based spectral clustering, Journal of King Saud University–Computer and Information Sciences, 32(10);1182–1193. DOI: https://doi.org/10.1016/j.jksuci.2018.01.009
A. C. Jinisha and T. S. S. Rani, “Brain tumor classification using SVM and bag of visual word classifier,” in Proceedings of the 2019 International Conference on Recent Advances in Energy-efficient Computing and Communication (ICRAECC), pp. 1–6, IEEE, Nagercoil, India, March 2019. DOI: https://doi.org/10.1109/ICRAECC43874.2019.8995144
M. Khalil, H. Ayad, and A. Adib, (2018). Performance evaluation of feature extraction techniques in MR-brain image classification system, Procedia Computer Science, 127;218–225. DOI: https://doi.org/10.1016/j.procs.2018.01.117
S. González-Villà, A. Oliver, Y. Huo, X. Lladó, and B. A. Landman, (2019). Brain structure segmentation in the presence of multiple sclerosis lesions, NeuroImage: Clinica, 22;101709. DOI: https://doi.org/10.1016/j.nicl.2019.101709
S. M. Kurian, S. J. Devaraj, and V. P. Vijayan, (2021). Brain tumour detection by gamma DeNoised wavelet segmented entropy classifier, CMC-Computers, Materials & Continua, 69(2);2093–2109. DOI: https://doi.org/10.32604/cmc.2021.018090
N.Sasirekha .,K R Kashwan, (2016) International Journal of Digital Content Technology and its Applications 10(2);61-77.
N.Sasirekha.,K R Kashwan (2015). Improved Segmentation of MRI Brain Images by Denoising and Contrast Enhancement, Indian Journal of Science and Technology 8(22);1-7. DOI: 10.17485/ijst/2015/v8i22/73050 DOI: https://doi.org/10.17485/ijst/2015/v8i22/73050
Saeidifar, M., Yazdi, M. & Zolghadrasli, (2021). A. Performance Improvement in Brain Tumor Detection in MRI Images Using a Combination of Evolutionary Algorithms and Active Contour Method. J Digit Imaging 34, 1209–1224 DOI: https://doi.org/10.1007/s10278-021-00514-6
Shivhare, S.N., N. Kumar, and N. Singh, (2019). A hybrid of active contour model and convex hull for automated brain tumor segmentation in multimodal MRI. Multimedia Tools and Applications. 78(24):34207-34229. DOI: https://doi.org/10.1007/s11042-019-08048-4
Maheshwari, R. U., Jayasutha, D., Senthilraja, R., & Thanappan, S. (2024). Development of Digital Twin Technology in Hydraulics Based on Simulating and Enhancing System Performance. Journal of Cybersecurity & Information Management, 13(2). DOI: https://doi.org/10.54216/JCIM.130204
Paulchamy, B., Uma Maheshwari, R., Sudarvizhi AP, D., Anandkumar AP, R., & Ravi, G. (2023). Optimized Feature Selection Techniques for Classifying Electrocorticography Signals. Brain‐Computer Interface: Using Deep Learning Applications, 255-278. DOI: https://doi.org/10.1002/9781119857655.ch11
Paulchamy, B., Chidambaram, S., Jaya, J., & Maheshwari, R. U. (2021). Diagnosis of Retinal Disease Using Retinal Blood Vessel Extraction. In International Conference on Mobile Computing and Sustainable Informatics: ICMCSI 2020 (pp. 343-359). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-49795-8_34
Maheshwari, U. Silingam, K. (2020). Multimodal Image Fusion in Biometric Authentication. Fusion: Practice and Applications, 79-91. https://doi.org/10.54216/FPA.010203 DOI: https://doi.org/10.54216/FPA.010203
R.Uma Maheshwari (2021). ENCRYPTION AND DECRYPTION USING IMAGE PROCESSING TECHNIQUES. International Journal of Engineering Applied Sciences and Technology, 5(12);219-222 DOI: https://doi.org/10.33564/IJEAST.2021.v05i12.037
URAL, A., & KİLİMCİ, Z. H. (2021). The Prediction of Chiral Metamaterial Resonance using Convolutional Neural Networks and Conventional Machine Learning Algorithms. International Journal of Computational and Experimental Science and Engineering, 7(3), 156–163. Retrieved from https://www.ijcesen.com/index.php/ijcesen/article/view/165 DOI: https://doi.org/10.22399/ijcesen.973726
BACAK, A., ŞENEL, M., & GÜNAY, O. (2023). Convolutional Neural Network (CNN) Prediction on Meningioma, Glioma with Tensorflow. International Journal of Computational and Experimental Science and Engineering, 9(2), 197–204. Retrieved from https://www.ijcesen.com/index.php/ijcesen/article/view/210 DOI: https://doi.org/10.22399/ijcesen.1306025
Jha, K., Sumit Srivastava, & Aruna Jain. (2024). A Novel Texture based Approach for Facial Liveness Detection and Authentication using Deep Learning Classifier. International Journal of Computational and Experimental Science and Engineering, 10(3);323-331. https://doi.org/10.22399/ijcesen.369 DOI: https://doi.org/10.22399/ijcesen.369
Radhi, M., & Tahseen, I. (2024). An Enhancement for Wireless Body Area Network Using Adaptive Algorithms. International Journal of Computational and Experimental Science and Engineering, 10(3);388-396. https://doi.org/10.22399/ijcesen.409 DOI: https://doi.org/10.22399/ijcesen.409
Sreetha E S, G Naveen Sundar, & D Narmadha. (2024). Enhancing Food Image Classification with Particle Swarm Optimization on NutriFoodNet and Data Augmentation Parameters. International Journal of Computational and Experimental Science and Engineering, 10(4);718-730. https://doi.org/10.22399/ijcesen.493 DOI: https://doi.org/10.22399/ijcesen.493
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Computational and Experimental Science and Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.