AI-Driven Predictive Maintenance for Smart Manufacturing Systems Using Digital Twin Technology
DOI:
https://doi.org/10.22399/ijcesen.1099Keywords:
Artificial Intelligence, Predictive Maintenance , Cyber-Physical Systems , Machine Learning techniques, Deep Learning, Industrial Internet of ThingsAbstract
The rapid advancements in Industry 4.0 and smart manufacturing systems have necessitated the integration of Artificial Intelligence (AI) and Digital Twin Technology (DTT) to enhance operational efficiency and predictive maintenance strategies. This study proposes an AI-driven predictive maintenance framework that leverages Digital Twin Technology to enable real-time monitoring, fault diagnosis, and failure prediction in industrial environments. The framework integrates machine learning (ML) models, deep learning techniques, and edge computing to analyze sensor data, detect anomalies, and optimize maintenance schedules. A reinforcement learning-based decision model is employed to dynamically adjust maintenance strategies, reducing downtime and extending equipment lifespan. Additionally, physics-informed AI models are incorporated into the digital twin architecture to simulate operational behaviours and predict potential failures with high accuracy. The proposed system is validated through a case study in a smart manufacturing plant, demonstrating a 35% improvement in predictive accuracy, 40% reduction in unplanned downtimes, and 25% optimization in maintenance costs compared to traditional predictive maintenance approaches. The findings indicate that the integration of AI and DTT significantly enhances the reliability and efficiency of cyber-physical manufacturing systems (CPMS), paving the way for more autonomous and intelligent industrial operations.
References
Lee, J., Kao, H. A., & Yang, S. (2014). Service innovation and smart analytics for Industry 4.0 and big data environment. Procedia CIRP, 16, 3-8. DOI: https://doi.org/10.1016/j.procir.2014.02.001
Thoben, K. D., Wiesner, S., & Wuest, T. (2017). "Industrie 4.0" and smart manufacturing – A review of research issues and application examples. International Journal of Automation Technology, 11(1), 4-16. DOI: https://doi.org/10.20965/ijat.2017.p0004
Zhang, C., & Xu, X. (2021). A digital twin-based approach for designing and managing cyber-physical manufacturing systems. International Journal of Production Research, 59(15), 4562-4577.
Tao, F., Zhang, M., Liu, Y., & Nee, A. Y. C. (2019). Digital twin in industry: State-of-the-art. IEEE Transactions on Industrial Informatics, 15(4), 2405-2415. DOI: https://doi.org/10.1109/TII.2018.2873186
Gao, R. X., & Wang, L. (2020). Smart predictive maintenance tools and methodologies for Industry 4.0. Mechanical Systems and Signal Processing, 150, 107252. DOI: https://doi.org/10.1016/j.ymssp.2020.107252
Nguyen, K. T., Medjaher, K., & Zerhouni, N. (2019). A new dynamic predictive maintenance framework using deep learning for Industry 4.0. IEEE Transactions on Industrial Electronics, 66(12), 9882-9890.
K. Tamilselvan, , M. N. S., A. Saranya, D. Abdul Jaleel, Er. Tatiraju V. Rajani Kanth, & S.D. Govardhan. (2025). Optimizing data processing in big data systems using hybrid machine learning techniques. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.936
Anakal, S., K. Krishna Prasad, Chandrashekhar Uppin, & M. Dileep Kumar. (2025). Diagnosis, visualisation and analysis of COVID-19 using Machine learning. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.826 DOI: https://doi.org/10.22399/ijcesen.826
S. Leelavathy, S. Balakrishnan, M. Manikandan, J. Palanimeera, K. Mohana Prabha, & R. Vidhya. (2024). Deep Learning Algorithm Design for Discovery and Dysfunction of Landmines. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.686 DOI: https://doi.org/10.22399/ijcesen.686
S. Esakkiammal, & K. Kasturi. (2024). Advancing Educational Outcomes with Artificial Intelligence: Challenges, Opportunities, And Future Directions. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.799 DOI: https://doi.org/10.22399/ijcesen.799
Kelleher, J. D., Namee, B. M., & D’Arcy, A. (2020). Fundamentals of machine learning for predictive maintenance. MIT Press.
Bousdekis, A., Magoutas, B., Apostolou, D., & Mentzas, G. (2018). A proactive decision-making framework for condition-based maintenance. Industrial Management & Data Systems, 118(2), 402-419.
Ylipää, T., Kritzinger, W., Karner, M., & Sihn, W. (2017). Predictive maintenance: Comparative analysis of maintenance strategies in manufacturing. Procedia CIRP, 64, 176-181.
Zhang, W., Yang, D., & Zhang, Y. (2019). Data-driven methods for predictive maintenance of industrial equipment: A survey. IEEE Systems Journal, 14(2), 1373-1384. DOI: https://doi.org/10.1109/JSYST.2019.2905565
Kulkarni, C., Kenworthy, L., & Breese, R. (2021). AI-based predictive maintenance in smart manufacturing: Challenges and future directions. Computers in Industry, 130, 103466. DOI: https://doi.org/10.1016/j.compind.2021.103466
Ni, J., & Jin, X. (2012). Decision support systems for predictive maintenance in smart manufacturing. International Journal of Production Research, 50(22), 6326-6339.
Ng, W. S., Ong, S. K., & Nee, A. Y. C. (2021). Digital twin-driven predictive maintenance for smart manufacturing. Robotics and Computer-Integrated Manufacturing, 72, 102135.
Wen, J., Gao, R. X., & Wang, L. (2020). Data-driven prognostics for predictive maintenance in smart manufacturing systems. IEEE Transactions on Industrial Informatics, 16(3), 2475-2484.
Tupa, J., Simota, J., & Steiner, F. (2017). Aspects of risk management implementation for Industry 4.0. Procedia Manufacturing, 11, 1223-1230. DOI: https://doi.org/10.1016/j.promfg.2017.07.248
Liu, C., Li, R., & Lin, Z. (2022). Edge computing-enabled predictive maintenance for smart manufacturing: A deep learning approach. Journal of Manufacturing Systems, 62, 102-115.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.