A Scalable, Secure, and Efficient Framework for Sharing Electronic Health Records Using Permissioned Blockchain Technology
DOI:
https://doi.org/10.22399/ijcesen.535Keywords:
Distributed Hash Tables(DHTs), Skip Lists, Delegated Proof of Stake, Attribute-Based Access Contro, Adaptive filters , BlockchainAbstract
This paper presents a scalable, secure blockchain-based healthcare system architecture that efficiently manages large patient datasets. DHTs and Skip Lists enable efficient data access, while DPoS and PBFT facilitate parallel transaction processing. Adaptive filters, Radix Trees extended by Merkle Trees, and an immutable blockchain ledger secured by Tendermint consensus ensure data integrity and protection against evolving threats. Threshold Cryptography secures consensus participant selection, and Bulletproofs verify transactions, complying with healthcare regulations. ChaCha20, a symmetric stream cipher, encrypts sensitive data, enhancing performance across devices. ABAC manages access rights, ensuring fine-grained control over data accessibility. This architecture offers a comprehensive, efficient, and secure solution for healthcare data management in blockchain environments.
References
A. Alhur, (2024). Impact of technological innovations on healthcare delivery: A literature review of efficiency, patient care, and operational challenges,” World Journal of Biology Pharmacy and Health Sciences, 18(2):216–219, doi: 10.30574/wjbphs.2024.18.2.0273.
H. Yaacob, (2021). Legal Issues In Distributed Ledger Technology (DLT) & Blockchain In Brunei Darussalam,” iEco | Islamic Economics Journal, 1(1);1–24, doi: 10.59202/ieco.v1i1.390.
A. Min et al., (2023). Blockchain Technology Research and Application: A Literature Review and Future Trends. Journal of Data Science and Intelligent Systems, doi: 10.47852/bonviewjdsis32021403.
A. Ali et al., (2023). Blockchain-Powered Healthcare Systems: Enhancing Scalability and Security with Hybrid Deep Learning.,” Sensors, 23(18);7740, doi: 10.3390/s23187740.
R. Ribitzky et al., (2018).Pragmatic, Interdisciplinary Perspectives on Blockchain and Distributed Ledger Technology: Paving the Future for Healthcare, Blockchain in Healthcare Today doi: 10.30953/bhty.v1.24.
Blockchain Technology in Healthcare - Concepts, Methodologies, and Applications. bentham science, 2023. doi: 10.2174/97898151651971230101.
M. Ramachandran, Phd, (2023). S3EF-HBCAs: Secure and Sustainable Software Engineering Framework for Healthcare Blockchain Applications., Blockchain in Healthcare Today, 6(2);, doi: 10.30953/bhty.v6.286.
S. Koul and T. Krishna, (2022). Introduction to Blockchain Technology and Its Role in the Healthcare Sector,” crc, pp. 55–80. doi: 10.1201/9781003166511-4.
S. Ramzan, A. Aqdus, R. Amin, D. Koundal, V. Ravi, and M. A. Al Ghamdi, (2023). Healthcare Applications Using Blockchain Technology: Motivations and Challenges,” IEEE Transactions on Engineering Management, 70(8);2874–2890, doi: 10.1109/tem.2022.3189734.
P. S. Aithal and E. Dias, (2021). Innovations in the Healthcare Industry Using Blockchain Technology, igi global,48–83. doi: 10.4018/978-1-7998-9606-7.ch003.
S. M. N. Sakib, (2022). Adaption Of Blockchain Technology In Healthcare Supply Chain In Saudi Arabia. . doi: 10.33767/osf.io/g4wst.
G. Llambias, R. Ruggia, L. González, J. Nogueira, and B. Bradach, (2023). Gateway-based Interoperability for Distributed Ledger Technology,” CLEI Electronic Journal, 26(2), doi: 10.19153/cleiej.26.2.5.
A. Shaikh, P. Ahire, K. Shewale, G. Shelke, M. Lokhande, and A. Sawalkar, (2023). Drug Tracing In Healthcare Supply Chain Using Distributed Ledger Technology, doi: 10.1109/icidca56705.2023.10100033.
H. Yu, Q. Fan, M. An, and H. Zhao, (2023). Blockchain technology research and application: a systematic literature review and future trends. doi: 10.48550/arxiv.2306.14802.
A. Singh, (2024). Enhancing Patient Consent Management through Blockchain Technology: A Promising Approach for Healthcare Data Security, Interantional Journal Of Scientific Research In Engineering And Management, vol. 08(3);1–5, doi: 10.55041/ijsrem29509.
A. Tandon, A. Dhir, A. K. M. N. Islam, and M. Mäntymäki, (2020). Blockchain in healthcare: A systematic literature review, synthesizing framework and future research agenda, Computers in Industry 122;103290, doi: 10.1016/j.compind.2020.103290.
N. Kannengießer, A. Sunyaev, M. Pfister, M. Greulich, and S. Lins, (2020). Bridges Between Islands: Cross-Chain Technology for Distributed Ledger Technology, Proceedings of the 53rd Hawaii International Conference on System Sciences. DOI:10.24251/hicss.2020.652
Y. Khan, A. Kashyap, L. Maini, V. Bajaj, S. Arora, and A. Yadav, (2022). Blockchain Technology in Healthcare, MAMC Journal of Medical Sciences, 8(3);187–192, doi: 10.4103/mamcjms.mamcjms_26_22.
M. Miah, (2023). A Comprehensive Study on the Use of Blockchain Technology in Healthcare, Information Technology and Management Science, 26;1–9, doi: 10.7250/itms-2023-0001.
H. Saeed et al., (2022). Blockchain technology in healthcare: A systematic review. PLOS ONE, 17(4);e0266462, doi: 10.1371/journal.pone.0266462.
M. A. Dwi Yuda and S. Watini, (2023). Implementation of Blockchain Technology as the Latest Solution to Improve Data Security and Integrity, International Transactions on Education Technology (ITEE), 2(1);71–82, doi: 10.33050/itee.v2i1.418.
Y. M. Alkhateeb, (2021). Blockchain Implications in the Management of Patient Complaints in Healthcare, Journal of Information Security, 12(3);212–223, doi: 10.4236/jis.2021.123011.
N. Tyagi, S. Kumar, N. Sharma, S. Gautam, and B. Bhushan, (2022). An Integrated Approach of Blockchain & Big Data in Health Care Sector,” river, pp. 183–205. doi: 10.1201/9781003337218-9.
A. J. M. Milne, A. Beckmann, and P. Kumar, (2020). Cyber-Physical Trust Systems Driven by Blockchain, IEEE Access, 8;66423–66437,doi: 10.1109/access.2020.2984675.
V. K. V. V. Bathalapalli, E. Kougianos, S. P. Mohanty, B. Rout, and V. Iyer, (2024). PUFchain 3.0: Hardware-Assisted Distributed Ledger for Robust Authentication in Healthcare Cyber-Physical Systems., Sensors, 24(3);938, doi: 10.3390/s24030938.
Prasanth Rao, Adiraju & Reddy, K. & Velayutham, Sathiyamoorthi. (2021). Automated Soil Residue Levels Detecting Device With IoT Interface. 10.4018/978-1-7998-2566-1.ch007.
K. Sudheer Reddy, G. P. S. Varma and S. S. S. Reddy, (2012). Understanding the scope of web usage mining & applications of web data usage patterns, 2012 International Conference on Computing, Communication and Applications, Dindigul, India, pp. 1-5, doi:
1109/ICCCA.2012.6179230.
C. N. S. Kumar et al., (2019). Similarity matching of pairs of text using CACT algorithm, Int. J. Eng. Adv. Technol., 8(6);2296-2298, doi:10.35940/ijeat.F8685.088619.
C. N. S. Kumar and K. S. Reddy, (2019). Effective data analytics on opinion mining, IJITEE, 8(10);2073-2080, doi:10.35940/ijitee.J9332.0881019.
Nabi, S. A., Kalpana, P., Chandra, N. S., Smitha, L., Naresh, K., Ezugwu, A. E., & Abualigah, L. (2024). Distributed private preserving learning based chaotic encryption framework for cognitive healthcare IoT systems. Informatics in Medicine Unlocked, 49, 101547. https://doi.org/10.1016/j.imu.2024.101547
A. Mallikarjuna Reddy, V. Venkata Krishna, L. Sumalatha,(2018). Face recognition based on stable uniform patterns. International Journal of Engineering & Technology, 7(2);626-634, 2018,doi: 10.14419/ijet.v7i2.9922
Sudeepthi Govathoti, A Mallikarjuna Reddy, Deepthi Kamidi, G BalaKrishna, Sri Silpa Padmanabhuni and Pradeepini Gera, (2022). Data Augmentation Techniques on Chilly Plants to Classify Healthy and Bacterial Blight Disease Leaves. International Journal of Advanced Computer Science and Applications(IJACSA), 13(6). http://dx.doi.org/10.14569/IJACSA.2022.0130618
Swarajya Lakshmi V Papineni, Snigdha Yarlagadda, Harita Akkineni, A. Mallikarjuna Reddy. (2023). Big Data Analytics Applying the Fusion Approach of Multicriteria Decision Making with Deep Learning Algorithms. International Journal of Engineering Trends and Technology, 69(1), 24-28, doi: 10.14445/22315381/IJETT-V69I1P204
A Mallikarjuna Reddy, Vakulabharanam Venkata Krishna, Lingamgunta Sumalatha and Avuku Obulesh, (2020). Age Classification Using Motif and Statistical Features Derived On Gradient Facial Images”, Recent Advances in Computer Science and Communications 13;965. https://doi.org/10.2174/2213275912666190417151247.
A.Mallikarjuna, B. Karuna Sree, (2019). Security towards Flooding Attacks in Inter Domain Routing Object using Ad hoc Network. International Journal of Engineering and Advanced Technology (IJEAT), 8(3).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Computational and Experimental Science and Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.