Reconfigurable Acceleration of Neural Networks: A Comprehensive Study of FPGA-based Systems
DOI:
https://doi.org/10.22399/ijcesen.559Abstract
This paper explores the potential of Field-Programmable Gate Arrays (FPGAs) for accelerating both neural network inference and training. We present a comprehensive analysis of FPGA-based systems, encompassing architecture design, hardware implementation strategies, and performance evaluation. Our study highlights the advantages of FPGAs over traditional CPUs and GPUs for neural network workloads, including their inherent parallelism, reconfigurability, and ability to tailor hardware to specific network needs. We delve into various hardware implementation strategies, from direct mapping to dataflow architectures and specialized hardware blocks, examining their impact on performance. Furthermore, we benchmark FPGA-based systems against traditional platforms, evaluating inference speed, energy efficiency, and memory bandwidth. Finally, we explore emerging trends in FPGA-based neural network acceleration, such as specialized architectures, efficient memory management techniques, and hybrid CPU-FPGA systems. Our analysis underscores the significant potential of FPGAs for accelerating deep learning applications, particularly those requiring high performance, low latency, and energy efficiency.
References
Junyi Chai, Hao Zeng, Anming Li, Eric W.T. Ngai, (2021). Deep learning in computer vision: A critical review of emerging techniques and application scenarios, Machine Learning with Applications, 6;100134 https://doi.org/10.1016/j.mlwa.2021.100134.
Sarker, I.H. (2021). Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN COMPUT. SCI. 2;420. https://doi.org/10.1007/s42979-021-00815-1
Yuan, X., Wang, Y., Xu, Z. et al. (2023). Training large-scale optoelectronic neural networks with dual-neuron optical-artificial learning. Nat Commun 14; 7110. https://doi.org/10.1038/s41467-023-42984-y
Tufail S, Riggs H, Tariq M, Sarwat (2023). AI. Advancements and Challenges in Machine Learning: A Comprehensive Review of Models, Libraries, Applications, and Algorithms. Electronics. 12(8):1789. https://doi.org/10.3390/electronics12081789
Alzubaidi, L., Zhang, J., Humaidi, A.J. et al. (2021) Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data 8;53. https://doi.org/10.1186/s40537-021-00444-8
Martin Wisniewski L, Bec J-M, Boguszewski G, Gamatié A. (2022). Hardware Solutions for Low-Power Smart Edge Computing. Journal of Low Power Electronics and Applications. 12(4):61. https://doi.org/10.3390/jlpea12040061
Wu R, Guo X, Du J, Li J. (2021). Accelerating Neural Network Inference on FPGA-Based Platforms—A Survey. Electronics. 10(9):1025. https://doi.org/10.3390/electronics10091025
Martín-Martín, A., Padial-Allué, R., Castillo, E., Parrilla, L., Parellada-Serrano, I., Morán, A., & García, A. (2024). Hardware Implementations of a Deep Learning Approach to Optimal Configuration of Reconfigurable Intelligence Surfaces. Sensors (Basel, Switzerland), 24(3). https://doi.org/10.3390/s24030899
A. Shawahna, S. M. Sait and A. El-Maleh, (2019). FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification: A Review, in IEEE Access, 7;7823-7859, doi: 10.1109/ACCESS.2018.2890150.
Boutros, A., Arora, A., & Betz, V. (2024). Field-Programmable Gate Array Architecture for Deep Learning: Survey & Future Directions. ArXiv. /abs/2404.10076
Li, Zhengjie & Zhang, Yufan & Wang, Jian & Lai, Jinmei. (2020). A survey of FPGA design for AI era. Journal of Semiconductors. 41; 021402. 10.1088/1674-4926/41/2/021402.
Zhiqiang Que, Hongxiang Fan, Marcus Loo, He Li, Michaela Blott, Maurizio Pierini, Alexander Tapper, and Wayne Luk. (2024). LL-GNN: Low Latency Graph Neural Networks on FPGAs for High Energy Physics. ACM Trans. Embed. Comput. Syst. 23(2);17-28 pages. https://doi.org/10.1145/3640464
Neu, M., Becker, J., Dorwarth, P. et al. (2024). Real-Time Graph Building on FPGAs for Machine Learning Trigger Applications in Particle Physics. Comput Softw Big Sci 8;8. https://doi.org/10.1007/s41781-024-00117-0
Morteza Babaee Altman, Wenbin Wan, Amineh Sadat Hosseini, Saber Arabi Nowdeh, Masoumeh Alizadeh, Machine learning algorithms for FPGA Implementation in biomedical engineering applications: A review, Heliyon, 10(4);e26652, https://doi.org/10.1016/j.heliyon.2024.e26652
Joo-Young Kim, (2021). Chapter Five - FPGA based neural network accelerators, Editor(s): Shiho Kim, Ganesh Chandra Deka, Advances in Computers, Elsevier,122;35-165, ISBN 9780128231234, https://doi.org/10.1016/bs.adcom.2020.11.002
Mittal, S. (2020). A survey of FPGA-based accelerators for convolutional neural networks. Neural Comput & Applic 32; 1109–1139. https://doi.org/10.1007/s00521-018-3761-1
Wang C, Luo Z. (2022). A Review of the Optimal Design of Neural Networks Based on FPGA. Applied Sciences. 12(21):10771. https://doi.org/10.3390/app122110771
Capra M, Bussolino B, Marchisio A, Shafique M, Masera G, Martina M. (2020). An Updated Survey of Efficient Hardware Architectures for Accelerating Deep Convolutional Neural Networks. Future Internet. 12(7):113. https://doi.org/10.3390/fi12070113
Zhang, S.; Du, Z.; Zhang, L.; Lan, H.; Liu, S.; Li, L.; Guo, Q.; Chen, T.; Chen, Y. Cambricon-X (2016) An accelerator for sparse neural networks. In Proceedings of the 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Taipei, Taiwan, 15–19 October 2016; pp. 1–12
Parashar, A.; Rhu, M.; Mukkara, A.; Puglielli, A.; Venkatesan, R.; Khailany, B.; Emer, J.; Keckler, S.W.; Dally, W.J. (2017). SCNN: An accelerator for compressed-sparse convolutional neural networks. In Proceedings of the 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA), Toronto, ON, Canada, 24–28 June 2017; pp. 27–40.
Han, S.; Liu, X.; Mao, H.; Pu, J.; Pedram, A.; Horowitz, M.A.; Dally, W.J. EIE: Effcient Inference Engine on Compressed Deep Neural Network. In Proceedings of the 43rd ACM/IEEE Annual International Symposium on Computer Architecture, ISCA 2016, Seoul, Korea, 18–22 June 2016; IEEE Computer Society: Washington, DC, USA, 2016; pp. 243–254.
Aimar, A.; Mostafa, H.; Calabrese, E.; Rios-Navarro, A.; Tapiador-Morales, R.; Lungu, I.; Milde, M.B.; Corradi, F.; Linares-Barranco, A.; Liu, S.; et al. (2019). NullHop: A Flexible Convolutional Neural Network Accelerator Based on Sparse Representations of Feature Maps. IEEE Trans. Neural Netw. Learn. Syst. 30;644–656.
Li, J.; Jiang, S.; Gong, S.; Wu, J.; Yan, J.; Yan, G.; Li, X. (2019). SqueezeFlow: A Sparse CNN Accelerator Exploiting Concise Convolution Rules. IEEE Trans. Comput. 68;1663–1677
Lee, J.; Kim, C.; Kang, S.; Shin, D.; Kim, S.; Yoo, H. (2019). UNPU: An Energy-Effcient Deep Neural Network Accelerator With Fully Variable Weight Bit Precision. IEEE J. Solid-State Circuits 54;173–185.
Lu, W.; Yan, G.; Li, J.; Gong, S.; Han, Y.; Li, X.(2017). FlexFlow: A Flexible Datafow Accelerator Architecture for Convolutional Neural Networks. In Proceedings of the 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), Austin, TX, USA, 4–8 February 2017; pp. 553–564.
Tu, F.; Yin, S.; Ouyang, P.; Tang, S.; Liu, L.; Wei, S. (2017). Deep Convolutional Neural Network Architecture With Reconfgurable Computation Patterns. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25;2220–2233.
Qin, E.; Samajdar, A.; Kwon, H.; Nadella, V.; Srinivasan, S.; Das, D.; Kaul, B.; Krishna, T. (2020). SIGMA: A Sparse and Irregular GEMM Accelerator with Flexible Interconnects for DNN Training. In Proceedings of the 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA), San Diego, CA, USA, 22–26 February 2020; pp. 58–70.
Agnihotri, A., & Kohli, N. (2024). A novel lightweight deep learning model based on SqueezeNet architecture for viral lung disease classification in X-ray and CT images. International Journal of Computational and Experimental Science and Engineering, 10(4);592-613. https://doi.org/10.22399/ijcesen.425
Priti Parag Gaikwad, & Mithra Venkatesan. (2024). KWHO-CNN: A Hybrid Metaheuristic Algorithm Based Optimzed Attention-Driven CNN for Automatic Clinical Depression Recognition . International Journal of Computational and Experimental Science and Engineering, 10(3)491-506. https://doi.org/10.22399/ijcesen.359
Polatoglu, A. (2024). Observation of the Long-Term Relationship Between Cosmic Rays and Solar Activity Parameters and Analysis of Cosmic Ray Data with Machine Learning. International Journal of Computational and Experimental Science and Engineering, 10(2);189-199. https://doi.org/10.22399/ijcesen.324
Rama Lakshmi BOYAPATI, & Radhika YALAVARTHI. (2024). RESNET-53 for Extraction of Alzheimer’s Features Using Enhanced Learning Models. International Journal of Computational and Experimental Science and Engineering, 10(4)879-889. https://doi.org/10.22399/ijcesen.519
ÇOŞGUN, A. (2024). Estimation Of Turkey’s Carbon Dioxide Emission with Machine Learning. International Journal of Computational and Experimental Science and Engineering, 10(1)95-101. https://doi.org/10.22399/ijcesen.302
Nagalapuram, J., & S. Samundeeswari. (2024). Genetic-Based Neural Network for Enhanced Soil Texture Analysis: Integrating Soil Sensor Data for Optimized Agricultural Management. International Journal of Computational and Experimental Science and Engineering, 10(4);962-970. https://doi.org/10.22399/ijcesen.572
S.D.Govardhan, Pushpavalli, R., Tatiraju.V.Rajani Kanth, & Ponmurugan Panneer Selvam. (2024). Advanced Computational Intelligence Techniques for Real-Time Decision-Making in Autonomous Systems. International Journal of Computational and Experimental Science and Engineering, 10(4);928-937. https://doi.org/10.22399/ijcesen.591
Paç, A. B., & Yakut, B. (2024). Assessing the Profit Impact of ARIMA and Neural Network Demand Forecasts in Retail Inventory Replenishment. International Journal of Computational and Experimental Science and Engineering, 10(4);811-826. https://doi.org/10.22399/ijcesen.439
PATHAPATI, S., N. J. NALINI, & Mahesh GADIRAJU. (2024). Comparative Evaluation of EEG signals for Mild Cognitive Impairment using Scalograms and Spectrograms with Deep Learning Models. International Journal of Computational and Experimental Science and Engineering, 10(4)859-866. https://doi.org/10.22399/ijcesen.534
Radhi, M., & Tahseen, I. (2024). An Enhancement for Wireless Body Area Network Using Adaptive Algorithms. International Journal of Computational and Experimental Science and Engineering, 10(3)388-396. https://doi.org/10.22399/ijcesen.409
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Computational and Experimental Science and Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.