Multimodal Biometric Authentication System for Military Weapon Access: Face and ECG Authentication
DOI:
https://doi.org/10.22399/ijcesen.565Keywords:
Biometrics, ECG, VGG16, Multimodal, AuthenticationAbstract
Unimodal or Single factor biometric systems refer to biometric systems that employ only one form of biometric data to authenticate an individual’s identity. These kinds of biometrics are susceptible to higher error rates and security vulnerabilities because it relays on a single trait for authentication. To overcome this, multimodal biometrics method is proposed. Multi-modal biometric system can authenticate more than once and some advantages include; highaccuracy, low error rate, and large population coverage. These biometrics systems increase integrity and privacy since it will contain several biometric features of every customer. So, here designed a multimodal biometrics project utilizing deep learning to enhance authentication security by combining face and Electrocardiogram(ECG) signals. VGG-16 model, a deep learning architecture used to capture complex patterns in accurate individual identification with both ECG and Facial data. The high-resolution convolutional filters capture the intricate details of the face and ECG waveform, ensuring high accuracy in distinguishing different individuals.
References
L. Sun, Z. Zhong, Z. Qu and N. Xiong, (2022). PerAE: An Effective Personalized AutoEncoder for ECG-Based Biometric in Augmented Reality System, IEEE Journal of Biomedical and Health Informatics, 26(6);2435-2446, doi: 10.1109/JBHI.2022.3145999.
D. Jyotishi and S. Dandapat, (2022). An ECG Biometric System Using Hierarchical LSTM With Attention Mechanism, IEEE Sensors Journal, 22(6);6052-6061 doi: 10.1109/JSEN.2021.3139135.
R. Cordeiro, D. Gajaria, A. Limaye, T. Adegbija, N. Karimian and F. Tehranipoor, (2020). ECG-Based Authentication Using Timing-Aware Domain-Specific Architecture, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39(11);3373-3384, doi: 10.1109/TCAD.2020.3012169.
S. S. Abdeldayem and T. Bourlai, (2020). A Novel Approach for ECG-Based Human Identification Using Spectral Correlation and Deep Learning, IEEE Transactions on Biometrics, Behavior, and Identity Science, 2(1);1-14, doi: 10.1109/TBIOM.2019.2947434.
L. Pu, P. J. Chacon, H. -C. Wu and J. -W. Choi, (2022). Novel Robust Photoplethysmogram-Based Authentication, IEEE Sensors Journal, 22(5);4675-4686, doi: 10.1109/JSEN.2022.3146291.
B. L. Ortiz, J. W. Chong, V. Gupta, M. Shoushan, K. Jung and T. Dallas, (2022). A Biometric Authentication Technique Using Smartphone Fingertip Photoplethysmography Signals, IEEE Sensors Journal, 22(14);14237-14249, doi: 10.1109/JSEN.2022.3176248.
S. Hinatsu, N. Matsuda, H. Ishizuka, S. Ikeda and O. Oshiro, (2022). Identification of PPG Measurement Sites Toward Countermeasures Against Biometric Presentation Attacks, IEEE Access, 10;118736-118746, doi: 10.1109/ACCESS.2022.3221456.
S. Hinatsu, D. Suzuki, H. Ishizuka, S. Ikeda and O. Oshiro, (2022). Evaluation of PPG Feature Values Toward Biometric Authentication Against Presentation Attacks, IEEE Access, 10;41352-41361, doi: 10.1109/ACCESS.2022.3167667.
S. A. Raurale, J. McAllister and J. M. D. Rincón, (2021). EMG Biometric Systems Based on Different Wrist-Hand Movements, IEEE Access, 9;12256-12266, doi: 10.1109/ACCESS.2021.3050704.
S. K. Behera, P. Kumar, D. P. Dogra and P. P. Roy, (2021). A Robust Biometric Authentication System for Handheld Electronic Devices by Intelligently Combining 3D Finger Motions and Cerebral Responses. IEEE Transactions on Consumer Electronics, 67(1);58-67, doi: 10.1109/TCE.2021.3055419.
Pradhan, J. He and N. Jiang, (2021). Performance Optimization of Surface Electromyography Based Biometric Sensing System for Both Verification and Identification, IEEE Sensors Journal, 21(19);21718-21729, doi: 10.1109/JSEN.2021.3079428.
Ranjeet Srivastva, Ashutosh Singh, Yogendra Narain Singh, (2021). PlexNet: A fast and robust ECG biometric system for human recognition, Information Sciences, 558;208-228, https://doi.org/10.1016/j.ins.2021.01.001.
S. A. Raurale, J. McAllister and J. M. D. Rincón, (2021). EMG Biometric Systems Based on Different Wrist-Hand Movements, IEEE Access, 9;12256-12266, doi: 10.1109/ACCESS.2021.3050704.
D. Y. Hwang, B. Taha, D. S. Lee and D. Hatzinakos, (2021) Evaluation of the Time Stability and Uniqueness in PPG-Based Biometric System, IEEE Transactions on Information Forensics and Security, 16;116-130, doi: 10.1109/TIFS.2020.3006313.
Li, Q.; Dong, P.; Zheng, J. (2020). Enhancing the security of pattern unlock with surface EMG-based biometrics. Appl. Sci., 10, 541.
Khan, M.U.; Choudry, Z.A.; Aziz, S.; Naqvi, S.Z.H.; Aymin, A.; Imtiaz, M.A. (2020). Biometric authentication based on EMG signals of speech. In Proceedings of the International Conference on Electrical, Communication, and Computer Engineering, Istanbul, Turkey, 12–13 June 2020.
Zhang, X.; Yang, Z.; Chen, T.; Chen, D.; Huang, M.C. (2019). Cooperative sensing and wearable computing for sequential hand gesture recognition. IEEE Sens. J., 19, 5575–5583.
Oh, D.C.; Jo, Y.U. (2019). EMG-based hand gesture classification by scale average wavelet transform and CNN. In Proceedings of the International Conference on Control, Automation and Systems, Jeju, Korea, 15–18 October 2019.
Qi, J.; Jiang, G.; Li, G. (2020) Surface EMG hand gesture recognition system based on PCA and GRNN. Neural Comput. Appl. 32;6343–6351.
Chen, L.; Fu, J.; Wu, Y.; Li, H.; Zheng, B. (2020). Hand gesture recognition using compact CNN via surface electromyography signals. Sensors 20;672.
Asif, A.R.; Waris, A.; Gilani, S.O.; Jamil, M.; Ashraf, H.; Shafique, M.; Niazi, K. (2020). Performance evaluation of convolutional neural network for hand gesture recognition using EMG. Sensors 20;1642.
K. Prlhodova and M. Hub, (2019). Biometric Privacy through Hand Geometry-A Survey, International Conference on Information and Digital Technologies (IDT): IEEE, pp. 395-401.
J. J. Winston and D. J. Hemanth, (2020). Moments-Based Feature Vector Extraction for Iris Recognition," in International Conference on Innovative Computing and Communications: Springer, pp. 255-263.
I. McAteer, A. Ibrahim, G. Zheng, W. Yang, and C. Valli, (2019). Integration of biometrics and steganography: A comprehensive review, Technologies, 7(2);34.
Sekhar, J. N. Chandra, Bullarao Domathoti, and Ernesto D. R. Santibanez Gonzalez. (2023). Prediction of Battery Remaining Useful Life Using Machine Learning Algorithms Sustainability 15(21);15283 https://doi.org/10.3390/su152115283.
F. Caldwell, (2019). Voice biometrics systems and methods, ed: Google Patents
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Computational and Experimental Science and Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.