Hybrid Ensemble Lightweight Cryptosystem for Internet of Medical Things Security
DOI:
https://doi.org/10.22399/ijcesen.625Keywords:
Internet of Medical Things, Hybrid ensemble lightweight, cryptosystem, Probabilistic rivest cipher, Modified MFBCAbstract
Internet of Medical Things (IoMT) is a fast-developing area that includes the use of connected medical devices to enhance patient care and expedite the procedures involved in the delivery of healthcare. Concerns about the safety and confidentiality of patient information are a roadblock to the broad use of telemedicine technologies like IoMT. Encryption is an essential part of IoMT security, and there is a wide variety of encryption methods that are used to safeguard sensitive patient data. This work implemented a hybrid ensemble lightweight cryptosystem (HELC) using probabilistic rivest cipher 6 (PRC6) encryption and modified feistel block cipher (MFBC) approaches. Initially, the data from users are applied to PRC6 encryption, which is symmetrical encryption and provides security at in abstract level. So, to provide more security to data, the MBFC is applied to PRC6 outcome. Then, the resultant data transferred over the IoMT environment to the destination. Finally, the MBFC decryption and PRC6 decryption operations are performed at receiver side, which resulted in decrypted outcome. The simulations results show that the proposed HELC consumed 0.0021 seconds of encryption time, and 0.000276 seconds of decryption time, which are lesser as compared to other approaches.
References
Koutras, D., Stergiopoulos, G., Dasaklis, T., Kotzanikolaou, P., Glynos, D., & Douligeris, C. (2019). Security in IoMT Communications: A Survey. Sensors. 20(17); 4828. https://doi.org/10.3390/s20174828
A. Ghubaish, T. Salman, M. Zolanvari, D. Unal, A. Al-Ali and R. Jain. (2021). Recent Advances in the Internet-of-Medical-Things (IoMT) Systems Security. in IEEE Internet of Things Journal. 8(11); 8707-8718, DOI: 10.1109/JIOT.2020.3045653.
M. N. Hossen, V. Panneerselvam, D. Koundal, K. Ahmed, F. M. Bui and S. M. Ibrahim. (2023). Federated Machine Learning for Detection of Skin Diseases and Enhancement of Internet of Medical Things (IoMT) Security. in IEEE Journal of Biomedical and Health Informatics. 27(2); 835-841. DOI: 10.1109/JBHI.2022.3149288.
Alsubaei, F., Abuhussein, A., Shandilya, V., & Shiva, S. (2019). IoMT-SAF: Internet of Medical Things Security Assessment Framework. Internet of Things, 8; 100123. https://doi.org/10.1016/j.iot.2019.100123
Yazid, Ahmed. (2023). Cybersecurity and Privacy Issues in the Internet of Medical Things (IoMT). Eigenpub Review of Science and Technology .7(1);1-21.
Papaioannou, M., Karageorgou, M., Mantas, G., Sucasas, V., Essop, I., Rodriguez, J., & Lymberopoulos, D. (2022). A Survey on Security Threats and Countermeasures in Internet of Medical Things (IoMT). Transactions on Emerging Telecommunications Technologies, 33(6), e4049. https://doi.org/10.1002/ett.4049
Kumar, Randhir, and Rakesh Tripathi. (2021). Towards design and implementation of security and privacy framework for internet of medical things (iomt) by leveraging blockchain and ipfs technology. The Journal of Supercomputing. 77, 7916–7955 (2021). https://doi.org/10.1007/s11227-020-03570-x
Zachos, G., Papaioannou, M., De Ree, M., Ribeiro, J. C., Mantas, G., & Rodriguez, J. (2021). Blockchain-Based Security Mechanisms for IoMT Edge Networks in IoMT-Based Healthcare Monitoring Systems. Sensors. 22(7); 2449. doi: 10.3390/s22072449.
Vaiyapuri, Thavavel, Adel Binbusayyis, and Vijayakumar Varadarajan. (2021). Security, privacy and trust in IoMT enabled smart healthcare system: a systematic review of current and future trends. International Journal of Advanced Computer Science and Applications. 12(2). DOI:10.14569/IJACSA.2021.0120291
Gopikrishnan, S., Priakanth, P., Srivastava, G., & Joe, C. V. (2023). SCHEISB: Design of a high efficiency IoMT security model based on sharded chains using bio-inspired optimizations. Computers and Electrical Engineering. 111;(108925). DOI:10.1016/j.compeleceng.2023.108925.
Salim, M. M., Kim, I., Doniyor, U., Lee, C., & Park, J. H. (2020). Homomorphic Encryption Based Privacy-Preservation for IoMT. Applied Sciences. 11(18); 8757.
Riya, K. S., Surendran, R., Tavera Romero, C. A., & Sendil, M. S. (2023). Encryption with User Authentication Model for Internet of Medical Things Environment. Intelligent Automation & Soft Computing. 35(1);507-520 DOI:10.32604/iasc.2023.027779
Liu, Xiaoguang, Yingying Sun, and Hao Dong. (2023). A pairing-free certificateless searchable public key encryption scheme for IoMT. Journal of Systems Architecture. 139;102885. https://doi.org/10.1016/j.sysarc.2023.102885
Ravi, Renjith V., S. B. Goyal, and Chawki Djeddi. (2022, December 17–18). A new medical image encryption algorithm for IoMT applications. Pattern Recognition and Artificial Intelligence: 5th Mediterranean Conference, MedPRAI 2021 Istanbul-Turkey. Proceedings. Cham: Springer International Publishing.
Wei, Tiankuo, Sicong Liu, and Xiaojiang Du. (2022). Learning-based efficient sparse sensing and recovery for privacy-aware IoMT. IEEE Internet of Things Journal. 9(12); 9948-9959.
Raj, Kamal, and Srinivasu Bodapati. (2022). FPGA Based Light Weight Encryption of Medical Data for IoMT Devices using ASCON Cipher. 2022 IEEE International Symposium on Smart Electronic Systems (iSES).
Saif, Sohail, Priya Das, and Suparna Biswas. (2023). LSEA-IOMT: On the Implementation of Lightweight Symmetric Encryption Algorithm for Internet of Medical Things (IoMT). Frontiers of ICT in Healthcare: Proceedings of EAIT 2022. Singapore: Springer Nature Singapore. 565-575.
Ravikumar, G., Venkatachalam, K., AlZain, M. A., Masud, M., & Abouhawwash, M. (2023). Neural cryptography with fog computing network for health monitoring using IoMT. Computer Systems Science and Engineering. 44(1), 945-959. https://doi.org/10.32604/csse.2023.024605
Wang, Haiyan. (2022). An Efficient Searchable Encryption Framework with Weighted Keywords for the Internet of Medical Things (IoMT). TechRxiv. Preprint.
El-Shafai, W., Khallaf, F., El-Rabaie, ES.M. et al. (2024). Proposed 3D chaos-based medical image cryptosystem for secure cloud-IoMT
eHealth communication services. J Ambient Intell Human Comput. 15, 1–28 DOI: 10.1007/s12652-022-03832-x.
Guitouni, Zied, Mohammed Ali Ghaieb, and Mohsen Machhout. (2023). Security Analysis of Medical Image Encryption using AES Modes for IoMT Systems. International Journal of Computer Applications. 14(2);975; 8887. DOI:10.5120/ijca2023922668
Bhuvaneswari, S., and T. PramanandaPerumal. (2023). Secure Group Key Management for Group Communication in IoMT Environment with Dual Encryption Scheme. Scandinavian Journal of Information Systems. 35(1); 616-627.
Bhushan, B., Kumar, A., Agarwal, A. K., Kumar, A., Bhattacharya, P., & Kumar, A. (2022). Towards a Secure and Sustainable Internet of Medical Things (IoMT): Requirements, Design Challenges, Security Techniques, and Future Trends. Sustainability. 15(7), 6177.
M. Adil, M. K. Khan, M. M. Jadoon, M. Attique, H. Song and A. Farouk. (2023). An AI-Enabled Hybrid Lightweight Authentication Scheme for Intelligent IoMT Based Cyber-Physical Systems. in IEEE Transactions on Network Science and Engineering. 10(5); 2719-2730. DOI: 10.1109/TNSE.2022.3159526.
Ravi, R. V., Goyal, S. B., Djeddi, C., & Kustov, V. (2022). Medical Image Transmission Using a Secure Cryptographic Approach for IoMT Applications. In International Conference on Computing, Intelligence and Data Analytics, Cham: Springer International Publishing, pp. 27-38.
P. Singh, K. J. Devi, H. K. Thakkar and K. Kotecha. (2022). Region-Based Hybrid Medical Image Watermarking Scheme for Robust and Secured Transmission in IoMT. in IEEE Access. 10; 8974-8993. DOI: 10.1109/ACCESS.2022.3143801.
Nie, X., Zhang, A., Chen, J., Qu, Y., & Yu, S. (2022). Blockchain-empowered secure and privacy-preserving health data sharing in edge-based IoMT. Security and Communication Networks. Article ID 8293716, 16 pages https://doi.org/10.1155/2022/8293716
Sutradhar, S., Karforma, S., Bose, R., & Roy, S. (2023). A Dynamic Step-wise Tiny Encryption Algorithm with Fruit Fly Optimization for Quality of Service improvement in healthcare. Healthcare Analytics. 3; 100177.
Ktari, J., Frikha, T., Ben Amor, N., Louraidh, L., Elmannai, H., & Hamdi, M. (2021). IoMT-Based Platform for E-Health Monitoring Based on the Blockchain. Electronics. 11(15); 2314.
Karam, Asaad Ali. (2022). Investigating The Importance of Ethics And Security On Internet Of Medical Things (IoMT). International Journal of Computations, Information and Manufacturing (IJCIM). 2(2). DOI:10.54489/ijcim.v2i2.114
Hernandez-Jaimes, M. L., Martinez-Cruz, A., Ramírez-Gutiérrez, K. A., & Feregrino-Uribe, C. (2023). Artificial intelligence for IoMT security: A review of intrusion detection systems, attacks, datasets and Cloud–Fog–Edge architectures. Internet of Things. 23;(100887). https://doi.org/10.1016/j.iot.2023.100887
Rajawat, A. S., Goyal, S. B., Bedi, P., Jan, T., Whaiduzzaman, M., & Prasad, M. (2023). Quantum Machine Learning for Security Assessment in the Internet of Medical Things (IoMT). Future Internet. 15(8);271.
Ahmed, S. F., Alam, M. S. B., Afrin, S., Rafa, S. J., Rafa, N., & Gandomi, A. H. (2024). Insights into Internet of Medical Things (IoMT): Data fusion, security issues and potential solutions. Information Fusion. 102;102060. https://doi.org/10.1016/j.inffus.2023.102060
Devi, S. S., Kuruba, C., Nam, Y., & Abouhawwash, M. (2023). Paillier Cryptography Based Message Authentication Code for IoMT Security. Computer Systems Science & Engineering. 44(3); 2209-2223. https://doi.org/10.32604/csse.2023.025514
Wazid, Mohammad, and Prosanta Gope. (2023). BACKM-EHA: A novel blockchain-enabled security solution for IoMT-based e-healthcare applications. ACM Transactions on Internet Technology. 23(3); 1-28.
Ribeiro, J. C., Mantas, G., Sakellari, G., & Gonzalez, J. (2023). Prototyping a Hyperledger Fabric-Based Security Architecture for IoMT-Based Health Monitoring Systems. Future Internet. 15(9); 308.
Rani, S., Kataria, A., Kumar, S., & Tiwari, P. (2023). Federated learning for secure IoMT-applications in smart healthcare systems: A comprehensive review. Knowledge-Based Systems. 274;110658. https://doi.org/10.1016/j.knosys.2023.110658
El-Banby, G. M., Elazm, L. A. A., El-Shafai, W., El-Bahnasawy, N. A., El-Samie, F. E. A., Elazm, A. A., & Siam, A. I. (2023). Security enhancement of the access control scheme in IoMT applications based on fuzzy logic processing and lightweight encryption. Complex & Intelligent Systems. 1-20(10); 435–454. https://doi.org/10.1007/s40747-023-01149-6
Alsemmeari, R. A., Dahab, M. Y., Alsulami, A. A., Alturki, B., & Algarni, S. (2022). Resilient Security Framework Using TNN and Blockchain for IoMT. Electronics. 12(10); 2252.
Singh, N., Das, A.K. (2024). TFAS: two factor authentication scheme for blockchain enabled IoMT using PUF and fuzzy extractor. J Supercomput. 80, 865–914. https://doi.org/10.1007/s11227-023-05507-6
SOYSAL, E. N., GURKAN, H., & YAVSAN, E. (2023). IoT Band: A Wearable Sensor System to Track Vital Data and Location of Missing or Earthquake Victims. International Journal of Computational and Experimental Science and Engineering, 9(3), 213–218. Retrieved from https://ijcesen.com/index.php/ijcesen/article/view/257
M, P., B, J., B, B., G, S., & S, P. (2024). Energy-efficient and location-aware IoT and WSN-based precision agricultural frameworks. International Journal of Computational and Experimental Science and Engineering, 10(4);585-591. https://doi.org/10.22399/ijcesen.480
Ponugoti Kalpana, L. Smitha, Dasari Madhavi, Shaik Abdul Nabi, G. Kalpana, & Kodati , S. (2024). A Smart Irrigation System Using the IoT and Advanced Machine Learning Model: A Systematic Literature Review. International Journal of Computational and Experimental Science and Engineering, 10(4);1158-1168. https://doi.org/10.22399/ijcesen.526
M. Devika, & S. Maflin Shaby. (2024). Optimizing Wireless Sensor Networks: A Deep Reinforcement Learning-Assisted Butterfly Optimization Algorithm in MOD-LEACH Routing for Enhanced Energy Efficiency. International Journal of Computational and Experimental Science and Engineering, 10(4);1329-1336. https://doi.org/10.22399/ijcesen.708
S, P. S., N. R., W. B., R, R. K., & S, K. (2024). Performance Evaluation of Predicting IoT Malicious Nodes Using Machine Learning Classification Algorithms. International Journal of Computational and Experimental Science and Engineering, 10(3);341-349. https://doi.org/10.22399/ijcesen.395
Alkhatib, A., Albdor , L., Fayyad, S., & Ali, H. (2024). Blockchain-Enhanced Multi-Factor Authentication for Securing IoT Children’s Toys: Securing IoT Children’s Toys. International Journal of Computational and Experimental Science and Engineering, 10(4);1041-1049. https://doi.org/10.22399/ijcesen.417
S, P., & A, P. (2024). Secured Fog-Body-Torrent : A Hybrid Symmetric Cryptography with Multi-layer Feed Forward Networks Tuned Chaotic Maps for Physiological Data Transmission in Fog-BAN Environment. International Journal of Computational and Experimental Science and Engineering, 10(4);671-681. https://doi.org/10.22399/ijcesen.490
P. Jagdish Kumar, & S. Neduncheliyan. (2024). A novel optimized deep learning based intrusion detection framework for an IoT networks. International Journal of Computational and Experimental Science and Engineering, 10(4);1169-1180. https://doi.org/10.22399/ijcesen.597
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Computational and Experimental Science and Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.