The Impact of Clinical Parameters on LSTM-based Blood Glucose Estimate in Type 1 Diabetes

Authors

  • Sunandha Rajagopal Research Scholar, Karpagam Academy of Higher Education, Coimbatore, Tamilnadu
  • N. Thangarasu

DOI:

https://doi.org/10.22399/ijcesen.656

Keywords:

Diabetes, Blood Glucose, Long Short-Term Memory, Recurrent Neural Network, Feature Importance

Abstract

Accurate forecasting of blood sugar levels is essential for managing diabetes, especially Type-1 reducing incidences, and diminishing care, costs in patients. In this study, a Long Short-Term Memory Recurrent Neural Network (LSTM) model has been employed to predict blood glucose levels using clinical data. The research focuses on identifying and analyzing several key parameters that play a significant role in determining future blood glucose levels, ensuring a robust and reliable prediction framework. We have considered patient-specific features: Insulin-Sensitivity-Factor (ISF), total daily dose (TDD) of insulin, HbA1C levels, height and weight of a patient, and age and gender while analyzing the prediction performance for Blood Glucose. We thought training LSTM models on a large dataset and studying the most important predictors with their predictive power would be beneficial. The results indicate that including these clinical parameters improves the accuracy of blood glucose prediction and provides valuable information for individuals to control diabetes.  This analysis highlights the efficiency of LSTM networks in making use of patient data to improve prediction models, eventually aiding more effective and individualized treatment strategies for Type 1 diabetic patients (T1D). This work also examines the extent to which each parameter influences the prediction of future blood glucose levels, providing deeper insights into their relative impact and significance in the predictive model.

References

El Idrissi, Touria & Idri, Ali & Abnane, Ibtissam & Bakkoury, Zohra. (2019). Predicting blood glucose using an LSTM Neural Network. Proceedings of the Federated Conference on Computer Science and Information Systems pp. 35-41. 10.15439/2019F159

Martinsson J, Schliep A, Eliasson B, Mogren O.(2019). Blood Glucose Prediction with Variance Estimation Using Recurrent Neural Networks. J Healthc Inform Res. 4(1):1-18. doi: 10.1007/s41666-019-00059-y. PMID: 35415439

Contador, S., Colmenar, J.M., Garnica, O. et al.(2022). Blood glucose prediction using multi-objective grammatical evolution: analysis of the “agnostic” and “what-if” scenarios. Genet Program Evolvable 23;161–192. https://doi.org/10.1007/s10710-021-09424-6.

Zhu, T., Uduku, C., Li, K. et al. (2022). Enhancing self-management in type 1 diabetes with wearables and deep learning. NPJ Digit. Med. 5;78. https://doi.org/10.1038/s41746-022-00626-5

Z. Chen, Z. Nie, J. Li, Y. Wu and H. Zhou, (2023). Multi-parameter Blood Glucose Prediction Algorithm for Type 1 Diabetes Based on Hybrid Neural Network Deep Learning Technique, IEEE 9th International Conference on Cloud Computing and Intelligent Systems (CCIS), Dali, China, pp. 474-479, doi: 10.1109/CCIS59572.2023.10263038.

Prendin, F., Pavan, J., Cappon, G. et al. (2023). The importance of interpreting machine learning models for blood glucose prediction in diabetes: an analysis using SHAP. Sci Rep 13; 16865. https://doi.org/10.1038/s41598-023-44155-x

Koca, Ö. A., & Kılıç, V. (2023). Multi-Parametric Glucose Prediction Using Multi-Layer LSTM. Avrupa Bilim Ve Teknoloji Dergisi (52);169-175.

Van Houdt, Greg & Mosquera, Carlos & Nápoles, Gonzalo. (2020). A Review on the Long Short-Term Memory Model. Artificial Intelligence Review. 53. 10.1007/s10462-020-09838-1.

Shailendra, Adarsh & Bengani, Chirag & K., Shantha & Senthilraja, P. & Prithivi, A & Ramesh, Shruti. (2023). Suspicious Activity Detection based on Audio Detecting Methodology using Deep Learning. Conference: International Conference on Recent Trends in Data Science and its Applications (ICRTDA 2023) 683-687. 10.13052/rp-9788770040723.131.

A. M. Javid, S. Das, M. Skoglund and S. Chatterjee, (2021). A ReLU Dense Layer to Improve the Performance of Neural Networks, ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 2021, pp. 2810-2814, doi: 10.1109/ICASSP39728.2021.9414269.

Mirshekarian S, Bunescu R, Marling C, Schwartz F. (2017). Using LSTMs to learn physiological models of blood glucose behavior. Annu Int Conf IEEE Eng Med Biol Soc. 2017 2887-2891. doi: 10.1109/EMBC.2017.8037460.

Munoz-Organero M. (2020). Deep Physiological Model for Blood Glucose Prediction in T1DM Patients. Sensors. 20(14);3896. https://doi.org/10.3390/s20143896

Jeon, J., Leimbigler, P.J., Baruah, G. et al. (2020). Predicting Glycaemia in Type 1 Diabetes Patients: Experiments in Feature Engineering and Data Imputation. J Healthc Inform Res 4;71–90. https://doi.org/10.1007/s41666-019-00063-2

F. Tena, O. Garnica, J. L. Davila and J. I. Hidalgo, (2023). An LSTM-based Neural Network Wearable System for Blood Glucose Prediction in People with Diabetes, in IEEE Journal of Biomedical and Health Informatics, doi: 10.1109/JBHI.2023.3300511.

W. Wang, M. Tong and M. Yu, (2020). Blood Glucose Prediction With VMD and LSTM Optimized by Improved Particle Swarm Optimization, in IEEE Access, 8;217908-217916, doi: 10.1109/ACCESS.2020.3041355.

Abdullah, N. I. N.., & Farhanahani Mahmud. (2023). Assessment of Blood Glucose Level Prediction Using LSTM Deep Learning Method. Evolution in Electrical and Electronic Engineering, 4(2);474-483.

El Idrissi, T., Idri, A. (2021). Evaluating a Comparing Deep Learning Architectures for Blood Glucose Prediction. In: Ye, X., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2020. Communications in Computer and Information Science, 1400. https://doi.org/10.1007/978-3-030-72379-8_17

El Idrissi, T., Idri, A. (2020). Deep Learning for Blood Glucose Prediction: CNN vs LSTM. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science, vol 12250. Springer, Cham. https://doi.org/10.1007/978-3-030-58802-1_28

Gómez-Castillo, N.Y. et al. (2022). A Machine Learning Approach for Blood Glucose Level Prediction Using a LSTM Network. In: Narváez, F.R., Proaño, J., Morillo, P., Vallejo, D., González Montoya, D., Díaz, G.M. (eds) Smart Technologies, Systems and Applications. SmartTech-IC 2021. Communications in Computer and Information Science, vol 1532. Springer, Cham. https://doi.org/10.1007/978-3-030-99170-8_8

T. Zhu, L. Kuang, K. Li, J. Zeng, P. Herrero, and P. Georgiou, (2021). Blood Glucose Prediction in Type 1 Diabetes Using Deep Learning on the Edge," 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 2021, pp. 1-5, doi: 10.1109/ISCAS51556.2021.9401083.

K. K. Parhi and N. K. Unnikrishnan, (2020). Brain-Inspired Computing: Models and Architectures, in IEEE Open Journal of Circuits and Systems, 1:185-204, doi: 10.1109/OJCAS.2020.3032092.

Siddharth Sharma, Simone Sharma, Anidhya Athaiya, (2020). Activation Functions in Neural Networks, Internatioanl Journal of Engineering applied Sciences and Technology 4(12) DOI:10.33564/ijeast.2020.v04i12.054

Chen, Zixuan & Nie, Zedong & Li, Jingzhen & Wu, Youwen & Zhou, Hongjun. (2023). Multi-parameter Blood Glucose Prediction Algorithm for Type 1 Diabetes Based on Hybrid Neural Network Deep Learning Technique. IEEE 9th International Conference on Cloud Computing and Intelligent Systems (CCIS), Dali, China, 2023, pp. 474-479, doi: 10.1109/CCIS59572.2023.10263038.

guven, mesut. (2024). Dynamic Malware Analysis Using a Sandbox Environment, Network Traffic Logs, and Artificial Intelligence. International Journal of Computational and Experimental Science and Engineering, 10(3);480-490. https://doi.org/10.22399/ijcesen.460

ARSLANKAYA, S., & Saltan YAŞLI, G. (2024). Predicting Diabetes Disease Using Data Mining Classification Algorithms and Comparison of Algorithm Performances. International Journal of Computational and Experimental Science and Engineering, 10(2);134-140. https://doi.org/10.22399/ijcesen.233

Bhanu Sekhar OBBU, & Zamrooda JABEEN. (2024). Integrated Fuzzy Cognitive Map and Chaotic Particle Swarm Optimization for Risk Assessment of Ischemic Stroke. International Journal of Computational and Experimental Science and Engineering, 10(4);867-878. https://doi.org/10.22399/ijcesen.540

Çakmak, A. (2024). SGLT 2 Inhibitors: Mechanisms, Clinical Applications, and Future Directions. International Journal of Computational and Experimental Science and Engineering, 10(4);999-1006. https://doi.org/10.22399/ijcesen.615

Achuthankutty, S., M, P., K, D., P, K., & R, prathipa. (2024). Deep Learning Empowered Water Quality Assessment: Leveraging IoT Sensor Data with LSTM Models and Interpretability Techniques. International Journal of Computational and Experimental Science and Engineering, 10(4);731-743. https://doi.org/10.22399/ijcesen.512

P. Jagdish Kumar, & S. Neduncheliyan. (2024). A novel optimized deep learning based intrusion detection framework for an IoT networks. International Journal of Computational and Experimental Science and Engineering, 10(4);1169-1180. https://doi.org/10.22399/ijcesen.597

Downloads

Published

2024-12-03

How to Cite

Sunandha Rajagopal, & N. Thangarasu. (2024). The Impact of Clinical Parameters on LSTM-based Blood Glucose Estimate in Type 1 Diabetes . International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.656

Issue

Section

Research Article