Material selection and performance analysis of RF-MEMS switch for MM-WAVE applications
DOI:
https://doi.org/10.22399/ijcesen.737Keywords:
RF-MEMS switch, mm-wave, 5G communication, Shunt-Capacitive switch, Material selectionAbstract
This paper presents the design, simulation, and investigation of a fundamental structure for capacitive MEMS switches in a shunt configuration. The main objective is to select materials that achieve low actuation voltage while maintaining RF and dynamic performance, especially for mm-wave applications. The proposed design consists of a Fixed-Fixed flexure beam with dimensions of 260 μm in length, 100 μm in width, and 0.5 μm in thickness. Considering the impact of squeeze film, 60 holes are integrated into the beam membrane, each measuring 64 μm² (8µm x 8µm), and a final gap of 1.9 μm is implemented. The suitability of materials for the beam membrane and dielectric layer in capacitive MEMS switches has been thoroughly examined through a combination of theoretical analysis and software simulations. Aluminum (Al) has emerged as the ideal choice for the beam membrane in mm-wave applications. This preference is defensible by its simulated results to offer a low pull-in voltage of 4V, a quality factor of 1.18, and a switching time of 67 microseconds. Similarly, Si3N4 has been identified as appropriate material, offering a upstate capacitance of 91fF and a downstate capacitance of 7.1pF.
References
Kurmendra and R. Kumar. (2021). A review on RF micro-electro-mechanical-systems (MEMS) switch for radio frequency applications. Microsyst. Technol., 27(7):2525–2542. doi: 10.1007/s00542-020-05025-y.
A. Tkachenko, I. Lysenko, and A. Kovalev. (2023). Investigation and Research of High-Performance RF MEMS Switches for Use in the 5G RF Front-End Modules. Micromachines. 14(2):477. doi: 10.3390/mi14020477.
J. Casals-Terré et al. (2022). Enhanced Robustness of a Bridge-Type Rf-Mems Switch for Enabling Applications in 5G and 6G Communications. Sensors. 22(22):8893. doi: 10.3390/s22228893.
K. Joy, A. Swarnkar, M. S. Giridhar, A. DasGupta, and D. R. Nair. (2023). RF MEMS capacitive shunt switch for low loss applications. J. Micromechanics Microengineering. 33(3):034004. doi: 10.1088/1361-6439/acb58c.
X. You et al. (2021). Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Sci. China Inf. Sci. 64(1):110301. doi: 10.1007/s11432-020-2955-6.
T. Cao, T. Hu, and Y. Zhao. (2020). Research Status and Development Trend of MEMS Switches: A Review. Micromachines. 11(7):694. doi: 10.3390/mi11070694.
R. Karthick and S. P. K. Babu. (2020). Review on Radio Frequency Micro Electro Mechanical Systems (RF-MEMS). Switch. 637. doi: 10.1007/978-981-15-2612-1_43.
D. Dubuc, K. Grenier, and J. Iannacci. (2022). RF-MEMS for smart communication systems and future 5G applications. Smart Sensors MEMs. 499–539. doi: 10.1016/B978-0-08-102055-5.00018-8.
J. Iannacci and H. V. Poor. (2022). Review and Perspectives of Micro/Nano Technologies as Key-Enablers of 6G. IEEE Access.10:55428–55458. doi: 10.1109/ACCESS.2022.3176348.
N. Zhang, Z. Yan, R. Song, C. Wang, Q. Guo, and J. Yang. (2019). Design and Performance of a J Band MEMS Switch. Micromachines.10(7):467. doi: 10.3390/mi10070467.
S. P. Chokkara, A. Gaur, K. G. Sravani, B. Balaji, and K. S. Rao. (2022). Design, Simulation and Analysis of a Slotted RF MEMS Switch. Trans. Electr. Electron. Mater. 23(4):419–429. doi: 10.1007/s42341-021-00363-8.
A. Kashani Ilkhechi, H. Mirzajani, E. Najafi Aghdam, and H. Badri Ghavifekr. (2017). A new electrostatically actuated rotary three-state DC-contact RF MEMS switch for antenna switch applications. Microsyst. Technol.23(1):231–243. doi: 10.1007/s00542-015-2714-1.
Q. Wu et al. (2023). Design and fabrication of a series contact RF MEMS switch with a novel top electrode. Nanotechnol. Precis. Eng. 6(1). doi: 10.1063/10.0016903.
G. M. Rebeiz. (2003). RF MEMS: Theory,Design, and Technology. Wiley. doi: 10.1002/0471225282.
Kai Chang. (1994). Microwave Solid-State Circuits and Applications. Wiley.
G. M. Rebeiz and J. B. Muldavin. (2001). RF MEMS switches and switch circuits. IEEE Microw. Mag. 2(4):59–71. doi: 10.1109/6668.969936.
V. K. Varadan, K. J. Vinoy, and K. A. Jose. (2003). RF MEMS and Their Applications. Wiley.
H. Feng, J. Zhao, C. Zhou, and M. Song. (2022). Design and Analysis of the Capacitive RF MEMS Switches with Support Pillars. Sensors.22(22). doi: 10.3390/s22228864.
Kurmendra and R. Kumar. (2021). Investigations on beam membrane and dielectric materials using Ashby’s methodology and their impact on the performance of a MEMS capacitive switch. Microsyst. Technol. 27(12):4269–4289. doi: 10.1007/S00542-021-05220-5.
R. Kumari and M. Angira. (2022). FEM simulation and material selection for enhancing the performance of a RF-MEMS capacitive switch. Artic. J. Comput. Electron. doi: 10.1007/s10825-022-01905-w.
G. Guisbiers, E. Herth, B. Legrand, N. Rolland, T. Lasri, and L. Buchaillot. (2010). Materials selection procedure for RF-MEMS. Microelectron. Eng. 87(9):1792–1795. doi: 10.1016/j.mee.2009.10.016.
J. G. Noel. (2016). Review of the properties of gold material for MEMS membrane applications. IET Circuits, Devices Syst. 10(2):156–161. doi: 10.1049/iet-cds.2015.0094.
M. F. Ashby, Y. J. M. Bréchet, D. Cebon, and L. Salvo. (2004). Selection strategies for materials and processes. Mater. Des. 25(1):51–67. doi: 10.1016/S0261-3069(03)00159-6.
Kurmendra and R. Kumar. (2021). Materials Selection Approaches and Fabrication Methods in RF MEMS Switches. J. Electron. Mater. 50(6):3149–3168. doi: 10.1007/s11664-021-08817-8.
W. M. van Spengen. (2012). Capacitive RF MEMS switch dielectric charging and reliability: a critical review with recommendations. J. Micromechanics Microengineering. 22(7):074001. doi: 10.1088/0960-1317/22/7/074001.
S. Shekhar, K. J. Vinoy, and G. K. Ananthasuresh. (2017). Surface-Micromachined Capacitive RF Switches With Low Actuation Voltage and Steady Contact. J. Microelectromechanical Syst. 26(3): 643–652. doi: 10.1109/JMEMS.2017.2688519.
A. Basu, G. G. Adams, and N. E. McGruer. (2016). A review of micro-contact physics, materials, and failure mechanisms in direct-contact RF MEMS switches. J. Micromechanics Microengineering. 26(10):104004. doi:10.1088/0960-317/26/10/104004.
Syam Kumar Duggirala, M. Sathya, & Nithya Poupathy. (2025). Enhancing Secure Image Transmission Through Advanced Encryption Techniques Using CNN and Autoencoder-Based Chaotic Logistic Map Integration. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.761
Hadi Athab Hamed, & Ahmed Kareem ABDULLAH. (2025). M-ary Pulse Ampplitude Modulation Recognition Using Discrete Meyer Wavelet and Reverse Biorthogonal Wavelet. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.749
ONAY, M. Y. (2024). Secrecy Rate Maximization for Symbiotic Radio Network with Relay-Obstacle. International Journal of Computational and Experimental Science and Engineering, 10(3). https://doi.org/10.22399/ijcesen.413
MOHAMED, N. N., Yulianta SIREGAR, Nur Arzilawati MD YUNUS, & Fazlina MOHD ALI. (2024). Modelling the Hybrid Security Approach for Secure Data Exchange: A Proof of Concept. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.344
Radhi, M., & Tahseen, I. (2024). An Enhancement for Wireless Body Area Network Using Adaptive Algorithms. International Journal of Computational and Experimental Science and Engineering, 10(3). https://doi.org/10.22399/ijcesen.409
Iqbal, A., Shaima Qureshi, & Mohammad Ahsan Chishti. (2025). Bringing Context into IoT: Vision and Research Challenges. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.760
N. Vidhya, & C. Meenakshi. (2025). Blockchain-Enabled Secure Data Aggregation Routing (BSDAR) Protocol for IoT-Integrated Next-Generation Sensor Networks for Enhanced Security. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.722
Kılıçarslan, M. (2024). The Effect of Emotional Intelligence on Social Media Advertising Perception . International Journal of Computational and Experimental Science and Engineering, 10(1). https://doi.org/10.22399/ijcesen.293
B. Paulchamy, Vairaprakash Selvaraj, N.M. Indumathi, K. Ananthi, & V.V. Teresa. (2024). Integrating Sentiment Analysis with Learning Analytics for Improved Student. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.781
Ganta, S. R., & Naga Malleswara Rao Nallamothu. (2025). A dynamic integrity and data confidentiality based wireless N2N data communication and security protocol on large networks. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.720
Robert, N. R., A. Cecil Donald, & K. Suresh. (2025). Artificial Intelligence Technique Based Effective Disaster Recovery Framework to Provide Longer Time Connectivity in Mobile Ad-hoc Networks. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.713
Sushma Polasi, & Hara Gopal Venkata Vajjha. (2024). Secure Drone Communications using MQTT protocol. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.685
S. Praseetha, & S. Sasipriya. (2024). Adaptive Dual-Layer Resource Allocation for Maximizing Spectral Efficiency in 5G Using Hybrid NOMA-RSMA Techniques. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.665
El-Taj, H. (2024). A Secure Fusion: Elliptic Curve Encryption Integrated with LSB Steganography for Hidden Communication. International Journal of Computational and Experimental Science and Engineering, 10(3). https://doi.org/10.22399/ijcesen.382
V, V., & S, V. (2024). Double Deep Q- energy aware Service allocation based on Dynamic fractional frequency reusable technique for lifetime maximization in HetNet-LTE network. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.543
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Computational and Experimental Science and Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.