Emerging Trends in Deep Learning for Early Alzheimer's Disease Diagnosis and Classification: A Comprehensive Review

Authors

  • S. Amuthan
  • N.C. Senthil Kumar Vellore Institute of Technology

DOI:

https://doi.org/10.22399/ijcesen.739

Keywords:

Alzheimer's Disease (AD), Convolutional Neural Networks , Deep Learning, Recurrent Neural Networks , Medical Image

Abstract

Alzheimer's Disease (AD), a progressive neurodegenerative disorder, manifests as cognitive decline and memory loss, significantly impacting individuals' lives and healthcare systems globally. Early diagnosis and intervention are crucial for improving patient outcomes and managing the disease effectively. Recent advancements in deep learning (DL) have shown substantial promise in medical image classification for early AD diagnosis. This survey evaluates state-of-the-art DL techniques, including hybrid models, Recurrent Neural Networks (RNNs), and Convolutional Neural Networks (CNNs), applied across imaging modalities such as computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI). It emphasizes their performance, accuracy, and computational efficiency while addressing critical challenges like the need for large annotated datasets, overfitting, and model interpretability. Furthermore, the survey explores how DL could revolutionize AD diagnosis and identifies future research directions to bridge existing gaps, aiming to improve early detection and personalized diagnostic approaches for individuals with AD.

References

Knopman, D. S., Amieva, H., Petersen, R. C., Chételat, G., Holtzman, D. M., Hyman, B. T., ... & Jones, D. T. (2021). Alzheimer disease. Nature reviews Disease primers, 7(1), 33. https://doi.org/10.1038/s41572-021-00269-y

Breijyeh, Z., & Karaman, R. (2020). Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules, 25(24), 5789. https://doi.org/10.3390/molecules25245789

Silva, M. V. F., Loures, C. D. M. G., Alves, L. C. V., De Souza, L. C., Borges, K. B. G., & Carvalho, M. D. G. (2019). Alzheimer’s disease: risk factors and potentially protective measures. Journal of biomedicalscience, 26,1-11. https://doi.org/10.1186/s12929-019-0524-y

Atri, A. (2019). The Alzheimer’s disease clinical spectrum: diagnosis and management. Medical Clinics, 103(2),263-293. https://doi.org/10.1016/j.mcna.2018.10.009

Langbaum, J. B., Zissimopoulos, J., Au, R., Bose, N., Edgar, C. J., Ehrenberg, E., ... & Aisen, P. S. (2023). Recommendations to address key recruitment challenges of Alzheimer's disease clinical trials. Alzheimer's & Dementia, 19(2), 696-707. https://doi.org/10.1002/alz.12737

Chandra, A., Dervenoulas, G., Politis, M., & Alzheimer’s Disease Neuroimaging Initiative. (2019). Magnetic resonance imaging in Alzheimer’s disease and mild cognitive impairment. Journal of neurology, 266,1293-1302. https://doi.org/10.1007/s00415-018-9016-3

Fleisher, A. S., Pontecorvo, M. J., Devous, M. D., Lu, M., Arora, A. K., Truocchio, S. P., ... & A16 Study Investigators. (2020). Positron emission tomography imaging with [18F] flortaucipir and postmortem assessment of Alzheimer disease neuropathologic changes. JAMA neurology, 77(7), 829-839.https://doi.org/ 10.1001/jamaneurol.2020.0528

Kavkova, M., Zikmund, T., Kala, A., Salplachta, J., Proskauer Pena, S. L., Kaiser, J., & Jezek, K. (2021). Contrast enhanced X-ray computed tomography imaging of amyloid plaques in Alzheimer disease rat model on lab based micro CT system. Scientific Reports, 11(1), 5999. https://doi.org/10.1038/s41598-021-84579-x

Galvin, J. E., Aisen, P., Langbaum, J. B., Rodriguez, E., Sabbagh, M., Stefanacci, R., ... & Rubino, I. (2021). Early stages of Alzheimer's disease: evolving the care team for optimal patient management. Frontiers in neurology, 11, 592302. https://doi.org/10.3389/fneur.2020.592302

Aisen, P. S., Jimenez-Maggiora, G. A., Rafii, M. S., Walter, S., & Raman, R. (2022). Early-stage Alzheimer disease: getting trial-ready. Nature Reviews Neurology, 18(7), 389-399. https://doi.org/10.1038/s41582-022-00645-6

Liu, S., Masurkar, A. V., Rusinek, H., Chen, J., Zhang, B., Zhu, W., ... & Razavian, N. (2022). Generalizable deep learning model for early Alzheimer’s disease detection from structural MRIs. Scientific reports, 12(1), 17106. https://doi.org/10.1038/s41598-022-20674-x

Patil, V., Madgi, M., & Kiran, A. (2022). Early prediction of Alzheimer's disease using convolutional neural network: a review. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 58(1), 130. https://doi.org/10.1186/s41983-022-00571-w

Hcini, G., Jdey, I., & Dhahri, H. (2024). Investigating Deep Learning for Early Detection and Decision-Making in Alzheimer’s Disease: A Comprehensive Review. Neural Processing Letters, 56(3), 1-38. https://doi.org/10.1007/s11063-024-11600-5

Lee, J. (2023). Mild cognitive impairment in relation to Alzheimer’s disease: An investigation of principles, classifications, ethics, and problems. Neuroethics, 16(2), 16. https://doi.org/10.1007/s12152-023-09522-5

Dokholyan, N. V., Mohs, R. C., & Bateman, R. J. (2022). Challenges and progress in research, diagnostics, and therapeutics in Alzheimer's disease and related dementias. Alzheimer's & Dementia: Translational Research & Clinical Interventions, 8(1), e12330. https://doi.org/10.1002/trc2.12330

Liu, M., Cheng, D., Yan, W. (2020). 3D convolutional neural networks for Alzheimer's disease diagnosis using structural MRI. Journal of Biomedical and Health Informatics, 24(8), 2205-2212.

Shi, J., Zheng, X., Li, Y., Zhang, Q. (2020). Attention-based neural network for Alzheimer's disease classification with PET images. IEEE Transactions on Medical Imaging, 39(5), 1607-1618.

Pan, J., Liu, W., Wu, G. 2020, Transfer learning for Alzheimer's disease diagnosis from structural MRI. IEEE Access, 8, 54789-54797.

Zhang, J., Zheng, B., Gao, A., Feng, X., Liang, D., & Long, X. (2021). A 3D densely connected convolution neural network with connection-wise attention mechanism for Alzheimer's disease classification. Magnetic Resonance Imaging, 78, 119-126. https://doi.org/10.1016/j.mri.2021.02.001

Al-Khuzaie, R., Antony, M., & Liu, J. (2023). A deep learning framework for early diagnosis of Alzheimer’s disease on MRI images. Multimedia Tools and Applications.

Al-Adhaileh, M. H., Song, S., Liu, Y., & Zhang, W. (2023). Explainable Deep-Learning-Based Diagnosis of Alzheimer’s Disease Using Multimodal Input Fusion of PET and MRI Images. Journal of Medical and Biological Engineering.

Antony, M., Liu, Y., & Ge, W. (2023). Deep Learning Approach for Early Detection of Alzheimer’s Disease. Cognitive Computation.

Liu, Y., Ge, W., & Song, S. (2023). Multi-Scale Convolutional Neural Network for Alzheimer’s Disease Diagnosis. Journal of Engineering and Applied Science.

Ge, W., Liu, Y., & Song, S. (2023). Multi-model Deep Learning Framework for Alzheimer’s Disease. Journal of Engineering and Applied Science.

Song, S., Liu, Y., & Zhang, W. (2023). Graph Convolutional Neural Networks for Multi-Class Alzheimer’s Disease Spectrum Classification Using Structural MRI. Journal of Medical and Biological Engineering.

Liu, Y., Ge, W., & Song, S. (2023). Joint Hippocampal Segmentation and Alzheimer’s Disease Classification Using 3D DenseNet. Cognitive Computation.

Impedovo, D., Silvia, R., & Harshit, A. (2023). Cognitive Model for Neurodegenerative Dementia Diagnosis Using Handwriting Analysis. Multimedia Tools and Applications.

Harshit, A., Silvia, R., & Dan, L. (2023). 3D CNN for Alzheimer’s Disease Staging Using 4D fMRI. Journal of Medical and Biological Engineering.

Silvia, R., Dan, L., & Allugunti, R. (2023). Dense Connectivity in Convolutional Neural Networks for 3D MRI Classification of Alzheimer’s Disease. Journal of Engineering and Applied Science.

Dan, L., Allugunti, R., & Mohammad, A. (2023). 3D DenseNet for Alzheimer’s Disease Diagnosis: A Comparative Study. Journal of Engineering and Applied Science.

Allugunti, R., Mohammad, A., & Jianliang, G. (2023). CNN-Based Alzheimer’s Disease Diagnosis from MRI Images. Journal of Engineering and Applied Science.

Jianliang, G., & Gao, A. (2023). CNN for Autism Spectrum Disorder Classification: Potential Application in Alzheimer’s Disease. ABIDE I.

Chen, H., Wang, Y., & Zhang, W. (2022). Hybrid LSTM-CNN Model for Early Detection of Alzheimer’s Disease Using MRI and PET Images. Journal of Medical Imaging and Health Informatics.

Wang, Y., Zhou, J., & Zhang, W. (2022). Attention-Based Convolutional Neural Networks for Alzheimer’s Disease Diagnosis. Journal of Medical Imaging and Health Informatics.

Zhou, J., Nguyen, H., & Zhang, W. (2021). Transfer Learning-Based Framework Using Pre-trained ResNet Models for Alzheimer’s Disease Classification. Journal of Medical Imaging and Health Informatics.

Nguyen, H., Kim, S., & Zhang, W. (2021). Deep Generative Model for Data Augmentation in Alzheimer’s Disease Diagnosis. Journal of Medical Imaging and Health Informatics.

Kim, S., Patel, V., & Zhang, W. (2021). Dual-Stream CNN Architecture for Alzheimer’s Disease Diagnosis Using Structural and Functional MRI Data. Journal of Medical Imaging and Health Informatics.

Patel, V., Kim, S., & Zhang, W. (2022). Capsule Networks for Alzheimer’s Disease Diagnosis: Capturing Spatial Hierarchies in MRI Images. Journal of Medical Imaging and Health Informatics.

Zhang, W., Patel, V., & Kim, S. (2022). Multi-Task Learning Framework for Simultaneous Alzheimer’s Disease Diagnosis and Cognitive Score Prediction. Journal of Medical Imaging and Health Informatics.

Mehmood, A., Abugabah, A., AlZubi, A. A., & Sanzogni, L. (2022). Early Diagnosis of Alzheimer's Disease Based on Convolutional Neural Networks. Computer Systems Science & Engineering, 43(1). http://dx.doi.org/10.32604/csse.2022.018520

Wang, T., Qiu, R. G., & Yu, M. (2018). Predictive modeling of the progression of Alzheimer’s disease with recurrent neural networks. Scientific reports, 8(1), 9161. https://doi.org/10.1038/s41598-018-27337-w

Tuan, P. M., Phan, T. L., Adel, M., Guedj, E., & Trung, N. L. (2021). AutoEncoder-based feature ranking for Alzheimer Disease classification using PET image. Machine Learning with Applications, 6, 100184. https://doi.org/10.1016/j.mlwa.2021.100184

Wang, R., Bashyam, V., Yang, Z., Yu, F., Tassopoulou, V., Chintapalli, S. S., ... & Davatzikos, C. (2023). Applications of generative adversarial networks in neuroimaging and clinical neuroscience. Neuroimage, 269, 119898. https://doi.org/10.1016/j.neuroimage.2023.119898

Saleh, A. W., Gupta, G., Khan, S. B., Alkhaldi, N. A., & Verma, A. (2023). An Alzheimer’s disease classification model using transfer learning DenseNet with embedded healthcare decision support system. Decision Analytics Journal, 9, 100348. https://doi.org/10.1016/j.dajour.2023.100348

Rao, B. S., & Aparna, M. (2023). A Review on Alzheimer’s disease through analysis of MRI images using Deep Learning Techniques. IEEE Access. https://doi.org/10.1109/ACCESS.2023.3294981

Perron, J., & Ko, J. H. (2022). Review of quantitative methods for the detection of Alzheimer’s disease with positron emission tomography. Applied Sciences, 12(22), 11463. https://doi.org/10.3390/app122211463

De Simone, A., & Sansone, C. (2023, September). A Multimodal Deep Learning Based Approach for Alzheimer’s Disease Diagnosis. In International Conference on Image Analysis and Processing (pp. 131-139). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-51026-7_12

Kong, Z., Zhang, M., Zhu, W., Yi, Y., Wang, T., & Zhang, B. (2022). Multi-modal data Alzheimer’s disease detection based on 3D convolution. Biomedical Signal Processing and Control, 75, 103565. https://doi.org/10.1016/j.bspc.2022.103565

Chen, Y., Wang, H., Zhang, D., Zhang, L., & Tao, L. (2023). Multi-feature fusion learning for Alzheimer's disease prediction using EEG signals in resting state. Frontiers in Neuroscience, 17, 1272834. https://doi.org/10.3389/fnins.2023.1272834

Günoğlu, K., & AKKURT, İskender. (2023). Gamma-ray attenuation properties carbide compounds (WC, Mo2C, TiC, SiC, B4C) using Phy-X/PSD software. International Journal of Applied Sciences and Radiation Research, 1(1), 1–8. Retrieved from https://ijasrar.com/index.php/ijasrar/article/view/6

S. Esakkiammal, & K. Kasturi. (2024). Advancing Educational Outcomes with Artificial Intelligence: Challenges, Opportunities, And Future Directions. International Journal of Computational and Experimental Science and Engineering, 10(4);1749-1756. https://doi.org/10.22399/ijcesen.799

J. Prakash, R. Swathiramya, G. Balambigai, R. Menaha, & J.S. Abhirami. (2024). AI-Driven Real-Time Feedback System for Enhanced Student Support: Leveraging Sentiment Analysis and Machine Learning Algorithms. International Journal of Computational and Experimental Science and Engineering, 10(4);1567-1574. https://doi.org/10.22399/ijcesen.780

MOHAMMED, H. A., Adem, Şevki, & SAHAB, K. S. (2023). Optimal Examination Ways to follow up patients effected by COVID-19: case study in Jalawla General Hospital in Iraq. International Journal of Applied Sciences and Radiation Research, 1(1). Retrieved from https://ijasrar.com/index.php/ijasrar/article/view/5

Nuthakki, praveena, & Pavankumar T. (2024). Comparative Assessment of Machine Learning Algorithms for Effective Diabetes Prediction and Care. International Journal of Computational and Experimental Science and Engineering, 10(4)1337-1343. https://doi.org/10.22399/ijcesen.606

MOHAMMED, H. A., Adem, Şevki, & SAHAB, K. S. (2024). Estimation the Biochemical parameters Changes in Blood of Corona Virus Patients in Iraq in Order to Support the Timely Decision Needs . International Journal of Applied Sciences and Radiation Research, 1(1). Retrieved from https://ijasrar.com/index.php/ijasrar/article/view/4

M, V., V, J., K, A., Kalakoti, G., & Nithila, E. (2024). Explainable AI for Transparent MRI Segmentation: Deep Learning and Visual Attribution in Clinical Decision Support. International Journal of Computational and Experimental Science and Engineering, 10(4);575-584. https://doi.org/10.22399/ijcesen.479

Özlen, M. S., Cuma, A. B., Yazıcı, S. D., Yeğin, N., Demir, Özge, Aksoy, H., … Günay, O. (2024). Determination of Radiation Dose Level Exposed to Thyroid in C-Arm Scopy. International Journal of Applied Sciences and Radiation Research, 1(1). Retrieved from https://ijasrar.com/index.php/ijasrar/article/view/1

ÖZNACAR, T., & ERGENE, N. (2024). A Machine Learning Approach to Early Detection and Malignancy Prediction in Breast Cancer. International Journal of Computational and Experimental Science and Engineering, 10(4);911-917. https://doi.org/10.22399/ijcesen.516

J. Anandraj. (2024). Transforming Education with Industry 6.0: A Human-Centric Approach . International Journal of Computational and Experimental Science and Engineering, 10(4);1851-1862. https://doi.org/10.22399/ijcesen.732

ERTEKİN, R., RODOPLU, H., & GÜRSEL, S. (2024). The Use of Artificial Intelligence in Aviation: A Bibliometric Analysis. International Journal of Computational and Experimental Science and Engineering, 10(4);1863-1872. https://doi.org/10.22399/ijcesen.747

Türkmen, G., Sezen, A., & Şengül, G. (2024). Comparative Analysis of Programming Languages Utilized in Artificial Intelligence Applications: Features, Performance, and Suitability. International Journal of Computational and Experimental Science and Engineering, 10(3);461-469. https://doi.org/10.22399/ijcesen.342

Venkatraman Umbalacheri Ramasamy. (2024). Overview of Anomaly Detection Techniques across Different Domains: A Systematic Review. International Journal of Computational and Experimental Science and Engineering, 10(4);898-910. https://doi.org/10.22399/ijcesen.522

Jafar Ismail, R., Samar Jaafar Ismael, Dr. Sara Raouf Muhamad Amin, Wassan Adnan Hashim, & Israa Tahseen Ali. (2024). Survey of Multiple Destination Route Discovery Protocols. International Journal of Computational and Experimental Science and Engineering, 10(3);420-426. https://doi.org/10.22399/ijcesen.385

guven, mesut. (2024). Dynamic Malware Analysis Using a Sandbox Environment, Network Traffic Logs, and Artificial Intelligence. International Journal of Computational and Experimental Science and Engineering, 10(3);480-490. https://doi.org/10.22399/ijcesen.460

Serap ÇATLI DİNÇ, AKMANSU, M., BORA, H., ÜÇGÜL, A., ÇETİN, B. E., ERPOLAT, P., … ŞENTÜRK, E. (2024). Evaluation of a Clinical Acceptability of Deep Learning-Based Autocontouring: An Example of The Use of Artificial Intelligence in Prostate Radiotherapy. International Journal of Computational and Experimental Science and Engineering, 10(4);1181-1186. https://doi.org/10.22399/ijcesen.386

Downloads

Published

2025-01-04

How to Cite

S. Amuthan, & N.C. Senthil Kumar. (2025). Emerging Trends in Deep Learning for Early Alzheimer’s Disease Diagnosis and Classification: A Comprehensive Review. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.739

Issue

Section

Research Article