Towards Smarter E-Learning: Real-Time Analytics and Machine Learning for Personalized Education
DOI:
https://doi.org/10.22399/ijcesen.786Keywords:
Z-score, E-Learning, Min-Max scaling, Ridge regression, Gradient Boosting Machine, Recursive Feature EliminationAbstract
E-Learning platforms change fast, and real-time behavioural analytics with machine learning provides the most powerful means to enhance learner outcomes. The datasets undergo preprocessing techniques like Z-score outlier detection, Min-Max scaling for feature normalization, and Ridge-RFE (Ridge regression and Recursive Feature Elimination) for feature selection in order to improve the accuracy and reliability of the predictions. Applying the Gradient Boosting Machine, classification accuracy up to a 94% level with respect to the model about predictions on learner outcomes was achievable. Thus, applying this, feedback systems may offer timely recommendations or directions in class that propel students toward better understanding on how to raise participation and success percentages. However, this approach has some potential benefits but there are still various challenges such as managing the data imbalance for models that generalize in a dynamic environment. Though hybrid methods mitigate this problem, real-time data pipelines with behaviour analytics incorporation call for significant computer-intensive resources and infrastructure. This integration has very high paybacks. It makes possible more responsive E-Learning platforms with individual needs almost met in real-time manners, thus giving instantaneous feedback, content suggestions, and timely interventions. Finally, convergence of real-time analytics with ML models culminates in adaptive learning environments which improve student engagement, retention, and quality of academic results.
References
Aslam, S. M., Jilani, A. K., Sultana, J., & Almutairi, L. (2021). Feature evaluation of emerging e-learning systems using machine learning: An extensive survey. IEEE Access. 9: 69573–69587. DOI:10.1109/ACCESS.2021.3077663.
Farhat, R., Mourali, Y., Jemni, M., & Ezzedine, H. (2020). An overview of Machine Learning Technologies and their use in E-learning. 2020 International Multi-Conference on: “Organization of Knowledge and Advanced Technologies” (OCTA). 1–4. DOI:10.1109/OCTA49274.2020.9151758
Khanal, S. S., Prasad, P. W. C., Alsadoon, A., & Maag, A. (2020). A systematic review: Machine learning based recommendation systems for e-learning. Education and Information Technologies. 25(4): 2635–2664. DOI:10.1007/s10639-019-10063-9
Lu, D.-N., Le, H.-Q., & Vu, T.-H. (2020). The factors affecting acceptance of e-learning: A machine learning algorithm approach. Education Sciences. 10(10): 270. DOI:10.3390/educsci10100270
Aher, S. B., & Lobo, L. M. R. J. (2013). Combination of machine learning algorithms for recommendation of courses in E-Learning System based on historical data. Knowledge-Based Systems. 51: 1–14. DOI:10.1016/j.knosys.2013.04.015
Luo, Y., Han, X., & Zhang, C. (2024). Prediction of learning outcomes with a machine learning algorithm based on online learning behavior data in blended courses. Asia Pacific Education Review. 25(2): 267–285. DOI:10.1007/s12564-022-09749-6
Tariq, M. A., Sargano, A. B., Iftikhar, M. A., & Habib, Z. (2023). Comparing different oversampling methods in predicting multi-class educational datasets using machine learning techniques. Cybernetics and Information Technologies. 23(4): 199–212. DOI:10.2478/cait-2023-0044
Gupta, S., Kumar, P., & Tekchandani, R. (2024). Artificial intelligence based cognitive state prediction in an e-learning environment using multimodal data. Multimedia Tools and Applications. 83(24): 64467–64498. DOI:10.1007/s11042-023-18021-x
Nasser Alsubaie, M. (2023). Predicting student performance using machine learning to enhance the quality assurance of online training via Maharat platform. Alexandria Engineering Journal. 69: 323–339. DOI:10.1016/j.aej.2023.02.004
Ashfaq, U., M, B. P., & Mafas, R. (2020). Managing Student Performance: A Predictive Analytics using Imbalanced Data. International Journal of Recent Technology and Engineering (IJRTE). 8(6): 2277–2283. DOI:10.35940/ijrte.e7008.038620
Gowthami, G., & Priscila, S. S. (2024). Classification of Intrusion Using CNN with IQR (Inter Quartile Range) Approach. In Communications in computer and information science. 259–269. DOI:10.1007/978-3-031-59097-9_19
Mohammed, R., Rawashdeh, J., & Abdullah, M. (2020). Machine learning with oversampling and undersampling techniques: Overview study and experimental results. 2020 11th International Conference on Information and Communication Systems (ICICS). 243–248. DOI:10.1109/ICICS49469.2020.239556
Konstantinov, A. V., & Utkin, L. V. (2021). Interpretable machine learning with an ensemble of gradient boosting machines. Knowledge-Based Systems. 222: 106993. DOI:10.1016/j.knosys.2021.106993
Junsomboon, N., & Phienthrakul, T. (2017). Combining over-sampling and under-sampling techniques for imbalance dataset. Proceedings of the 9th International Conference on Machine Learning and Computing. 243–247. DOI:10.1145/3055635.3056643
Yaro, A. S., Maly, F., Prazak, P., & Malý, K. (2024). Outlier detection performance of a modified z-score method in time-series rss observation with hybrid scale estimators. IEEE Access. 12: 12785–12796. DOI:10.1109/ACCESS.2024.3356731
Muhammad Ali, P. J. (2022). Investigating the impact of min-max data normalization on the regression performance of k-nearest neighbor with different similarity measurements. ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY. 10(1): 85–91. DOI:10.14500/aro.10955
Yue, S., Li, P., & Hao, P. (2003). SVM classification:Its contents and challenges. Applied Mathematics-A Journal of Chinese Universities. 18(3): 332–342. DOI:10.1007/s11766-003-0059-5
Guo, G., Wang, H., Bell, D., Bi, Y., & Greer, K. (2003). Knn model-based approach in classification. In R. Meersman, Z. Tari, & D. C. Schmidt (Eds.), On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE. Springer Berlin Heidelberg. 2888: 986–996. DOI:10.1007/978-3-540-39964-3_62
Segerstedt, B. (1992). On ordinary ridge regression in generalized linear models. Communications in Statistics - Theory and Methods. 21(8): 2227–2246. DOI:10.1080/03610929208830909
Praveen, S. P., Hasan, M. K., Abdullah, S. N. H. S., Sirisha, U., Tirumanadham, N. S. K. M. K., Islam, S., Ahmed, F. R. A., Ahmed, T. E., Noboni, A. A., Sampedro, G. A., Yeun, C. Y., & Ghazal, T. M. (2024). Enhanced feature selection and ensemble learning for cardiovascular disease prediction: Hybrid GOL2-2 T and adaptive boosted decision fusion with babysitting refinement. Frontiers in Medicine. 11: 1407376. DOI:10.3389/fmed.2024.1407376
Tama, B. A., & Rhee, K.-H. (2019). An in-depth experimental study of anomaly detection using gradient boosted machine. Neural Computing and Applications. 31(4): 955–965. DOI:10.1007/s00521-017-3128-z
Shiffler, R. E. (1988). Maximum z scores and outliers. The American Statistician. 42(1): 79–80. DOI:10.1080/00031305.1988.10475530
Ponugoti Kalpana, L. Smitha, Dasari Madhavi, Shaik Abdul Nabi, G. Kalpana, & Kodati , S. (2024). A Smart Irrigation System Using the IoT and Advanced Machine Learning Model: A Systematic Literature Review. International Journal of Computational and Experimental Science and Engineering, 10(4);1158-1168. https://doi.org/10.22399/ijcesen.526
Rama Lakshmi BOYAPATI, & Radhika YALAVARTHI. (2024). RESNET-53 for Extraction of Alzheimer’s Features Using Enhanced Learning Models. International Journal of Computational and Experimental Science and Engineering, 10(4);879-889. https://doi.org/10.22399/ijcesen.519
Jha, K., Sumit Srivastava, & Aruna Jain. (2024). A Novel Texture based Approach for Facial Liveness Detection and Authentication using Deep Learning Classifier. International Journal of Computational and Experimental Science and Engineering, 10(3);323-331. https://doi.org/10.22399/ijcesen.369
Boddupally JANAIAH, & Suresh PABBOJU. (2024). HARGAN: Generative Adversarial Network BasedDeep Learning Framework for Efficient Recognition of Human Actions from Surveillance Videos. International Journal of Computational and Experimental Science and Engineering, 10(4);1379-1393. https://doi.org/10.22399/ijcesen.587
P. Rathika, S. Yamunadevi, P. Ponni, V. Parthipan, & P. Anju. (2024). Developing an AI-Powered Interactive Virtual Tutor for Enhanced Learning Experiences. International Journal of Computational and Experimental Science and Engineering, 10(4);1594-1600. https://doi.org/10.22399/ijcesen.782
B. Paulchamy, Vairaprakash Selvaraj, N.M. Indumathi, K. Ananthi, & V.V. Teresa. (2024). Integrating Sentiment Analysis with Learning Analytics for Improved Student. International Journal of Computational and Experimental Science and Engineering, 10(4);1575-1583. https://doi.org/10.22399/ijcesen.781
J. Prakash, R. Swathiramya, G. Balambigai, R. Menaha, & J.S. Abhirami. (2024). AI-Driven Real-Time Feedback System for Enhanced Student Support: Leveraging Sentiment Analysis and Machine Learning Algorithms. International Journal of Computational and Experimental Science and Engineering, 10(4);1567-1574. https://doi.org/10.22399/ijcesen.780
S. Leelavathy, S. Balakrishnan, M. Manikandan, J. Palanimeera, K. Mohana Prabha, & R. Vidhya. (2024). Deep Learning Algorithm Design for Discovery and Dysfunction of Landmines. International Journal of Computational and Experimental Science and Engineering, 10(4);1556-1566. https://doi.org/10.22399/ijcesen.686
S. Esakkiammal, & K. Kasturi. (2024). Advancing Educational Outcomes with Artificial Intelligence: Challenges, Opportunities, And Future Directions. International Journal of Computational and Experimental Science and Engineering, 10(4);1749-1756. https://doi.org/10.22399/ijcesen.799
M. Venkateswarlu, K. Thilagam, R. Pushpavalli, B. Buvaneswari, Sachin Harne, & Tatiraju.V.Rajani Kanth. (2024). Exploring Deep Computational Intelligence Approaches for Enhanced Predictive Modeling in Big Data Environments. International Journal of Computational and Experimental Science and Engineering, 10(4);1140-1148. https://doi.org/10.22399/ijcesen.676
U. S. Pavitha, S. Nikhila, & Mohan, M. (2024). Hybrid Deep Learning Based Model for Removing Grid-Line Artifacts from Radiographical Images. International Journal of Computational and Experimental Science and Engineering, 10(4);763-774. https://doi.org/10.22399/ijcesen.514
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Computational and Experimental Science and Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.