Brain Glial Cell Tumor Classification through Ensemble Deep Learning with APCGAN Augmentation

Authors

  • T. Deepa Department of Computer Science and Engineering, Sri Venkateswara University College of Engineering, Andhra Pradesh, India
  • Ch. D. V Subba Rao Department of Computer Science and Engineering, Sri Venkateswara University College of Engineering, Andhra Pradesh, India

DOI:

https://doi.org/10.22399/ijcesen.803

Keywords:

classification, ensemble learning, Generative Adversarial Network, Data Augmentation, Brain tumor

Abstract

Classification of brain tumor plays a vital role in medical imaging for accurate diagnosis, treatment, and monitoring. Deep learning approaches have gained significant traction in this industry because of their ability to extract relevant features from medical images. The research suggests employing an ensemble classifier with a weighted voting mechanism to categorize glial cell brain malignancies such as Astrocytoma, Glioblastoma multiforme, Oligodendroglioma, and Ependymoma. The proposed ensemble technique employs three main classifiers: Convolutional Neural Network (CNN), Deep Convolutional Long Short Term Memory (C-LSTM), and Deep Convolutional Neural Network + Conditional Random Fields (DCNN+CRF). Deep learning algorithms require a huge amount of input data to avoid overfitting.  The Adaptive Progressive Convolutional Generative Adversarial Networks (APCGANs) are used to produce realistic artificial images to efficiently train the proposed methodology. Overall, the proposed ensemble method with weighted voting strategy consistently outperforms the other tested algorithms (CNN, C-LSTM, and DCNN+CRF). Ensemble method attained an accuracy of 99.4 %, recall - 99.1%, precision- 98.0%, and F1-score of 99.2%. Ensemble method consistently demonstrates superior performance in accurately classifying brain tumors, making it a promising algorithm for brain tumor analysis tasks.

References

Cancer statistics [Online]. Available: https://www.cancer.net/cancer-types/bra in-tumor/ statistics. Accessed: 17-Feb-2024

Jäkel Sarah, Dimou Leda, (2017). Glial Cells and Their Function in the Adult Brain: A Journey through the History of Their Ablation, Frontiers in Cellular Neuroscience, 11, doi: 10.3389/fncel.2017.00024

G.S. Tandel, M. Biswas, O.G. Kakde, A. Tiwari, H.S. Suri, M. Turk, B. K. Madhusudhan, L. Saba, J.S. Suri, (2019) A review on a deep learning perspective in brain cancer classification, Cancers 11(1);111, https://doi.org/10.3390/ cancers11010111.

Rakesh Chandra Joshi, Rashmi Mishra, Puneet Gandhi, Vinay Kumar Pathak, Radim Burget, Malay Kishore Dutta, (2021). Ensemble based machine learning approach for prediction of glioma and multi-grade classification, Computers in Biology and Medicine, 137;104829, https://doi.org/10.1016/j.compbiomed.2021.104829

Parpura, V., Heneka, M.T., Montana, V., Oliet, S.H.R., Schousboe, A., Haydon, P.G., Stout, R.F., Jr, Spray, D.C., Reichenbach, A., Pannicke, T., Pekny, M., Pekna, M., Zorec, R. and Verkhratsky, A. (2012), Glial cells in (patho)physiology. Journal of Neurochemistry, 121: 4-27. https://doi.org/10.1111/j.1471-4159.2012.07664.x

Walker C, Baborie A, Crooks D, Wilkins S, Jenkinson MD. (2011). Biology, genetics and imaging of glial cell tumours. Br J Radiol. 2(2);S90-106. doi: 10.1259/bjr/23430927.

T.Deepa, ,Dr. Ch.D.V. Subba Rao, (2022). Deep Learning approaches for brain tumor segmentation and multiclass classification, NeuroQuantology, 20(16);1694-1706, DOI: 10.48047/NQ.2022.20.16.NQ880168

Zahoor, M.M.; Qureshi, S.A.; Bibi, S.; Khan, S.H.; Khan, A.; Ghafoor, U.; Bhutta, M.R. (2022). A New Deep Hybrid Boosted and Ensemble Learning-Based Brain Tumor Analysis Using MRI. Sensors 22;2726. https://doi.org/10.3390/ s22072726

S. Montaha, S. Azam, A. K. M. R. H. Rafid, M. Z. Hasan, A. Karim and A. Islam, (2022). TimeDistributed-CNN-LSTM: A Hybrid Approach Combining CNN and LSTM to Classify Brain Tumor on 3D MRI Scans Performing Ablation Study, in IEEE Access, 10; 60039-60059, doi: 10.1109/ACCESS.2022.3179577.

Amin, J., Anjum, M. A., Sharif, M., Jabeen, S., Kadry, S., and Moreno Ger, P. (2022). A new model for brain tumor detection using ensemble transfer learning and quantum variational classifier. Comput. Intell. Neurosci. 3236305. doi: 10.1155/2022/3236305

Zahid Ullah, Muhammad Usman, Moongu Jeon, Jeonghwan Gwak, (2022) Cascade multiscale residual attention CNNs with adaptive ROI for automatic brain tumor segmentation, Information Sciences, 608;1541-1556, https://doi.org/10.1016/j.ins.2022.07.044.

S. Ahmad and P. K. Choudhury, (2022). On the Performance of Deep Transfer Learning Networks for Brain Tumor Detection Using MR Images, in IEEE Access, 10;59099-59114,

Alsubai S, Khan HU, Alqahtani A, Sha M, Abbas S and Mohammad UG (2022) Ensemble deep learning for brain tumor detection. Front. Comput. Neurosci. 16:1005617. doi: 10.3389/fncom.2022.1005617

Murthy, M.Y.B., Koteswararao, A. & Babu, M.S. (2022) Adaptive fuzzy deformable fusion and optimized CNN with ensemble classification for automated brain tumor diagnosis. Biomed. Eng. Lett. 12, 37–58. https://doi.org/10.1007/s13534-021-00209-5

Bhatele, K.R., Bhadauria, S.S. (2023). Multiclass classification of central nervous system brain tumor types based on proposed hybrid texture feature extraction methods and ensemble learning. Multimed Tools Appl 82, 3831–3858. https://doi.org/10.1007/s11042-022-13439-1

Syed Ali Nawaz, Dost Muhammad Khan & Salman Qadri (2022) Brain Tumor Classification Based on Hybrid Optimized Multi-features Analysis Using Magnetic Resonance Imaging Dataset, Applied Artificial Intelligence, 36:1, 2031824, DOI: 10.1080/08839514.2022.2031824

S. Asif, W. Yi, Q. U. Ain, J. Hou, T. Yi and J. Si, (2022). Improving Effectiveness of Different Deep Transfer Learning-Based Models for Detecting Brain Tumors From MR Images, in IEEE Access, 10;34716-34730, doi: 10.1109/ACCESS.2022.3153306.

Das, Suchismita, Bose, Srijib, Nayak, Gopal Krishna and Saxena, Sanjay. (2022) Deep learning-based ensemble model for brain tumor segmentation using multi-parametric MR scans Open Computer Science, 12(1);211-226. https://doi.org/10.1515/comp-2022-0242.

Kang, J.; Ullah, Z.; Gwak, J. (2021). MRI-Based Brain Tumor Classification Using Ensemble of Deep Features and Machine Learning Classifiers. Sensors 21;2222. https://doi.org/10.3390/s21062222

Garg, G., & Garg, R. (2021). Brain Tumor Detection and Classification based on Hybrid Ensemble Classifier. ArXiv, abs/2101.00216.

Ramya, P., Thanabal, M.S. & Dharmaraja, C. (2021) Brain tumor segmentation using cluster ensemble and deep super learner for classification of MRI. J Ambient Intell Human Comput 12;9939–9952. https://doi.org/10.1007/s12652-021-03390-8

Kimia Rezaei, Hamed Agahi & Azar Mahmoodzadeh (2020): A Weighted Voting Classifiers Ensemble for the Brain Tumors Classification in MR Images, IETE Journal of Research, DOI: 10.1080/03772063.2020.1780487.

Clark, K.; Vendt, B.; Smith, K.; Freymann, J.; Kirby, J.; Koppel, P.; Moore, S.; Phillips, S.; Maffitt, D.; Pringle, M.; et al. (2013). The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. J. Digit. Imaging 26, 1045–1057.

Tandel, G.S.; Tiwari, A.; Kakde, O.G.; Gupta, N.; Saba, L.; Suri, J.S. (2023). Role of Ensemble Deep Learning for Brain Tumor Classification in Multiple Magnetic Resonance Imaging Sequence Data. Diagnostics 13, 481. https://doi.org/ 10.3390/diagnostics13030481

Gopal S. Tandel, Antonella Balestrieri, Tanay Jujaray, Narender N. Khanna, Luca Saba, Jasjit S. Suri, (2020) Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm, Computers in Biology and Medicine, 122, 103804,

Meor Yahaya MS and Teo J (2023) Data augmentation using generative adversarial networks for images and biomarkers in medicine and neuroscience. Front. Appl. Math. Stat. 9:1162760. doi: 10.3389/fams.2023.1162760

Han, C. et al. (2020). Infinite Brain MR Images: PGGAN-Based Data Augmentation for Tumor Detection. In: Esposito, A., Faundez-Zanuy, M., Morabito, F., Pasero, E. (eds) Neural Approaches to Dynamics of Signal Exchanges. Smart Innovation, Systems and Technologies, vol 151. Springer, Singapore. https://doi.org/10.1007/978-981-13-8950-4_27

Jiamin Liang, Xin Yang, Yuhao Huang, Haoming Li, Shuangchi He, Xindi Hu, Zejian Chen, Wufeng Xue, Jun Cheng, Dong Ni, (2022). Sketch guided and progressive growing GAN for realistic and editable ultrasound image synthesis, Medical Image Analysis,79, https://doi.org/10.1016/j.media.2022.102461.

Xue, Y., Xu, T., Zhang, H., Long, L.R., Huang, X. (2018). SegAN: Adversarial network with multi-scale L1 loss for Medical Image Segmentation. Neuroinformatics, 16(3): 383-392. https://doi.org/10.1007/s12021-018-9377-x

Nema, S., Dudhane, A., Murala, S., Naidu, S. (2020). RescueNet: An unpaired GAN for brain tumor segmentation. Biomedical Signal Processing and Control, 55: 101641. https://doi.org/10.1016/j.bspc.2019.101641

N. Remzan, K. Tahiry and A. Farchi, "Ensemble Transfer Learning for Brain Tumor Classification," 2022 5th International Conference on Advanced Communication Technologies and Networking (CommNet), Marrakech, Morocco, 2022, pp. 1-6, doi: 10.1109/CommNet56067.2022.9993831.

Deep Learning Ian Goodfellow, Yoshua Bengio, Aaron Courville - Deep Learning (2017, MIT).pdf

Pereira, S., Pinto, A., Alves, V., Silva, C.A. (2016). Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Transactions on Medical Imaging, 35(5): 1240-1251. https://doi.org/10.1109/TMI.2016.2538465

M. Artzi et al., (2021). Classification of Pediatric Posterior Fossa Tumors Using Convolutional Neural Network and Tabular Data, IEEE Access, 9;91966-91973, doi: 10.1109/ACCESS.2021.3085771.

Y. Liu et al., (2020).Deep C-LSTM Neural Network for Epileptic Seizure and Tumor Detection Using High-Dimension EEG Signals, in IEEE Access, 8, doi: 10.1109/ACCESS.2020.2976156.

Sushovan Chaudhury, Kartik Sau, (2023). A BERT encoding with Recurrent Neural Network and Long-Short Term Memory for breast cancer image classification, Decision Analytics Journal, 6, https://doi.org/10.1016/j.dajour.2023.100177

S. Shanthi, S. Saradha, J.A. Smitha, N. Prasath, H. Anandakumar, (2022). An efficient automatic brain tumor classification using optimized hybrid deep neural network, International Journal of Intelligent Networks, 3,

https://doi.org/10.1016/j.ijin.2022.11.003.

Kamnitsas, K., Ledig, C., Newcombe, V.F., Simpson, J.P., Kane, A.D., Menon, D.K., Glocker, B. (2017). Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Medical image analysis, 36: 61-78. https://doi.org/10.1016/j.media.2016.10.004

Hussain, S., Anwar, S.M., Majid, M. (2018). Segmentation of glioma tumors in brain using deep convolutional neural network. Neurocomputing, 282: 248-261.

https://doi.org/10.1016/j.neucom.2017.12.032

Zhao, X., Wu, Y., Song, G., Li, Z., Zhang, Y., Fan, Y. (2018). A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Medical image analysis, 43: 98-111. https://doi.org/10.1016/j.media.2017.10.002

Hu, K., Gan, Q., Zhang, Y., Deng, S., Xiao, F., Huang, W., Gao, X. (2019). Brain tumor segmentation using multi-cascaded convolutional neural networks and conditional random field. IEEE Access, 7: 92615-92629.

https://doi.org/10.1109/ACCESS.2019.2927433

J. Dhar, (2021). Multistage Ensemble Learning Model With Weighted Voting and Genetic Algorithm Optimization Strategy for Detecting Chronic Obstructive Pulmonary Disease, in IEEE Access, 9;48640-48657, doi: 10.1109/ACCESS.2021.3067949.

Livieris, I.E.; Kanavos, A.; Tampakas, V.; Pintelas, P. (2019). A Weighted Voting Ensemble Self-Labeled Algorithm for the Detection of Lung Abnormalities from X-Rays. Algorithms 12, 64. https://doi.org/10.3390/a12030064

Alturki, N.; Umer, M.; Ishaq, A.; Abuzinadah, N.; Alnowaiser, K.; Mohamed, A.; Saidani, O.; Ashraf, I. (2023). Combining CNN Features with Voting Classifiers for Optimizing Performance of Brain Tumor Classification. Cancers 15, 1767. https://doi.org/10.3390/ cancers15061767

MOHAMMED, H. A., Adem, Şevki, & SAHAB, K. S. (2023). Optimal Examination Ways to follow up patients effected by COVID-19: case study in Jalawla General Hospital in Iraq. International Journal of Applied Sciences and Radiation Research , 1(1). Retrieved from https://ijasrar.com/index.php/ijasrar/article/view/5

MOHAMMED, H. A., Adem, Şevki, & SAHAB, K. S. (2024). Estimation the Biochemical parameters Changes in Blood of Corona Virus Patients in Iraq in Order to Support the Timely Decision Needs . International Journal of Applied Sciences and Radiation Research , 1(1). Retrieved from https://ijasrar.com/index.php/ijasrar/article/view/4

OZSOY, S., & DELIBAS, E. A. O. (2023). The Effect of Fragment C of Tetanus Toxin on Memory Deficits in a Rat Model of Alzheimer’s Disease . International Journal of Computational and Experimental Science and Engineering, 9(3), 254–259. Retrieved from https://ijcesen.com/index.php/ijcesen/article/view/264

M, V., V, J., K, A., Kalakoti, G., & Nithila, E. (2024). Explainable AI for Transparent MRI Segmentation: Deep Learning and Visual Attribution in Clinical Decision Support. International Journal of Computational and Experimental Science and Engineering, 10(4);575-584. https://doi.org/10.22399/ijcesen.479

BACAK, A., ŞENEL, M., & GÜNAY, O. (2023). Convolutional Neural Network (CNN) Prediction on Meningioma, Glioma with Tensorflow. International Journal of Computational and Experimental Science and Engineering, 9(2), 197–204. Retrieved from https://ijcesen.com/index.php/ijcesen/article/view/210

N, S., S. Prabu, V, T. K., D, C., K, B., & B. Buvaneswari. (2024). Computer Aided Based Performance Analysis of Glioblastoma Tumor Detection Methods using UNET-CNN. International Journal of Computational and Experimental Science and Engineering, 10(4);753-762. https://doi.org/10.22399/ijcesen.515

Vijayadeep GUMMADI, & Naga Malleswara Rao NALLAMOTHU. (2025). Optimizing 3D Brain Tumor Detection with Hybrid Mean Clustering and Ensemble Classifiers. International Journal of Computational and Experimental Science and Engineering, 11(1)124-134. https://doi.org/10.22399/ijcesen.719

Prathipati Silpa Chaitanya, & Susanta Kumar Satpathy. (2024). Advancing Brain Tumour Detection and Classification: Knowledge Distilled ResNeXt Model for Multi-Class MRI Analysis. International Journal of Computational and Experimental Science and Engineering, 10(4);1610-1623. https://doi.org/10.22399/ijcesen.730

Özlen, M. S., Cuma, A. B., Yazıcı, S. D., Yeğin, N., Demir, Özge, Aksoy, H., … Günay, O. (2024). Determination of Radiation Dose Level Exposed to Thyroid in C-Arm Scopy. International Journal of Applied Sciences and Radiation Research , 1(1). Retrieved from https://ijasrar.com/index.php/ijasrar/article/view/13

Abuş, F., Gürçalar , A., Günay, O., Tunçman , D., Kesmezacar, F. F., & Demir, M. (2024). Quantification of Lens Radiation Exposure in Scopy Imaging: A Dose Level Analysis. International Journal of Applied Sciences and Radiation Research , 1(1). Retrieved from https://ijasrar.com/index.php/ijasrar/article/view/11

SHARMA, M., & BENIWAL, S. (2024). Feature Extraction Using Hybrid Approach of VGG19 and GLCM For Optimized Brain Tumor Classification. International Journal of Computational and Experimental Science and Engineering, 10(4);1728-1734. https://doi.org/10.22399/ijcesen.714

Downloads

Published

2025-01-05

How to Cite

T. Deepa, & Ch. D. V Subba Rao. (2025). Brain Glial Cell Tumor Classification through Ensemble Deep Learning with APCGAN Augmentation. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.803

Issue

Section

Research Article