Innovative Computational Intelligence Frameworks for Complex Problem Solving and Optimization
DOI:
https://doi.org/10.22399/ijcesen.834Keywords:
Quantum-Inspired Evolutionary, Deep learning, Computational Intelligence, Global Search Ability, Particle Swarm Optimization, Solution AccuracyAbstract
The rapid advancement of computational intelligence (CI) techniques has enabled the development of highly efficient frameworks for solving complex optimization problems across various domains, including engineering, healthcare, and industrial systems. This paper presents innovative computational intelligence frameworks that integrate advanced algorithms such as Quantum-Inspired Evolutionary Algorithms (QIEA), Hybrid Metaheuristics, and Deep Learning-based optimization models. These frameworks aim to address optimization challenges by improving convergence rates, solution accuracy, and computational efficiency. In the context of healthcare, a Deep Learning-based optimization framework was successfully used to predict the optimal treatment plans for cancer patients, achieving a 92% accuracy rate in classification tasks. The proposed frameworks demonstrate the potential for addressing a broad spectrum of complex problems, from resource allocation in smart grids to dynamic scheduling in manufacturing systems. The integration of cutting-edge CI methods offers a promising future for optimizing performance and solving real-world problems in a wide range of industries.
References
Cagan, J., Grossmann, I. E., & Hooker, J. (1997). A conceptual framework for combining artificial intelligence and optimization in engineering design. Research in Engineering Design, 9(1), 20–34. https://doi.org/10.1007/bf01607055. DOI: https://doi.org/10.1007/BF01607055
Jyothi, A.P., Shankar, A., Narayan, A., Monisha, T.R., Gaur, P. and Kumar, S.S. (2024). Computational Intelligence and Its Transformative Influence. 2024 IEEE 9th International Conference for Convergence in Technology (I2CT), 1–7. https://doi.org/10.1109/i2ct61223.2024.10543715. DOI: https://doi.org/10.1109/I2CT61223.2024.10543715
Keller, J.M., Liu, D. and Fogel, D.B., (2016). Fundamentals of computational intelligence: neural networks, fuzzy systems, and evolutionary computation. John Wiley & Sons. DOI:10.1002/9781119214403 DOI: https://doi.org/10.1002/9781119214403
Rahman, I. and Mohamad-Saleh, J. (2018). Hybrid bio-Inspired computational intelligence techniques for solving power system optimization problems: A comprehensive survey. Applied Soft Computing, 69, 72–130. https://doi.org/10.1016/j.asoc.2018.04.051. DOI: https://doi.org/10.1016/j.asoc.2018.04.051
Khaleel, M., Jebrel, A. and Shwehdy, D.M. (2024). Artificial Intelligence in Computer Science. Int. J. Electr. Eng. and Sustain., 2(2), 01–21. https://doi. org/10.5281/zenodo. 10937515
Xu, Y., Liu, X., Cao, X., Huang, C., Liu, E., Qian, S., Liu, X., Wu, Y., Dong, F., Qiu, C., Qiu, J., Hua, K., Su, W., Wu, J., Xu, H., Han, Y., Fu, C., Yin, Z., Liu, M., . . . Zhang, J. (2021). Artificial intelligence: A powerful paradigm for scientific research. The Innovation, 2(4), 100179. https://doi.org/10.1016/j.xinn.2021.100179. DOI: https://doi.org/10.1016/j.xinn.2021.100179
Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Computers & Operations Research, 13(5), 533–549. https://doi.org/10.1016/0305-0548(86)90048-1. DOI: https://doi.org/10.1016/0305-0548(86)90048-1
Armaghani, D. J., Mohammed, A. S., Bhatawdekar, R. M., Fakharian, P., Kainthola, A., & Mahmood, W. I. (2024). Introduction to the Special Issue on Computational Intelligent Systems for Solving Complex Engineering Problems: Principles and Applications. Computer Modeling in Engineering & Sciences, 138(3), 2023–2027. https://doi.org/10.32604/cmes.2023.031701. DOI: https://doi.org/10.32604/cmes.2023.031701
Robertson, J., Fossaceca, J., & Bennett, K. (2022). A Cloud-Based Computing Framework for Artificial Intelligence Innovation in Support of Multidomain Operations. IEEE Transactions on Engineering Management, 69(6), 3913–3922. https://doi.org/10.1109/tem.2021.3088382. DOI: https://doi.org/10.1109/TEM.2021.3088382
Abioye, S. O., Oyedele, L. O., Akanbi, L., Ajayi, A., Davila Delgado, J. M., Bilal, M., Akinade, O. O., & Ahmed, A. (2021). Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges. Journal of Building Engineering, 44, 103299. https://doi.org/10.1016/j.jobe.2021.103299. DOI: https://doi.org/10.1016/j.jobe.2021.103299
Del Ser, J., Osaba, E., Sanchez-Medina, J. J., Fister, I., & Fister, I. (2020). Bioinspired Computational Intelligence and Transportation Systems: A Long Road Ahead. IEEE Transactions on Intelligent Transportation Systems, 21(2), 466–495. https://doi.org/10.1109/tits.2019.2897377. DOI: https://doi.org/10.1109/TITS.2019.2897377
Zahraee, S.M., S. M., Khalaji Assadi, M., & Saidur, R. (2016). Application of Artificial Intelligence Methods for Hybrid Energy System Optimization. Renewable and Sustainable Energy Reviews, 66, 617–630. https://doi.org/10.1016/j.rser.2016.08.028. DOI: https://doi.org/10.1016/j.rser.2016.08.028
Jackson, I., Ivanov, D., Dolgui, A., & Namdar, J. (2024). Generative artificial intelligence in supply chain and operations management: a capability-based framework for analysis and implementation. International Journal of Production Research, 62(17), 6120–6145. https://doi.org/10.1080/00207543.2024.2309309. DOI: https://doi.org/10.1080/00207543.2024.2309309
Toorajipour, R., Sohrabpour, V., Nazarpour, A., Oghazi, P., & Fischl, M. (2021). Artificial intelligence in supply chain management: A systematic literature review. Journal of Business Research, 122, 502–517. https://doi.org/10.1016/j.jbusres.2020.09.009. DOI: https://doi.org/10.1016/j.jbusres.2020.09.009
Han, S., & Sun, X. (2024). Optimizing Product Design Using Genetic Algorithms and Artificial Intelligence Techniques. IEEE Access, 12, 151460–151475. https://doi.org/10.1109/access.2024.3456081. DOI: https://doi.org/10.1109/ACCESS.2024.3456081
Huang, M.-H., & Rust, R. T. (2022). A Framework for Collaborative Artificial Intelligence in Marketing. Journal of Retailing, 98(2), 209–223. https://doi.org/10.1016/j.jretai.2021.03.001. DOI: https://doi.org/10.1016/j.jretai.2021.03.001
Khan, M., Chuenchart, W., Surendra, K. C., & Kumar Khanal, S. (2023). Applications of artificial intelligence in anaerobic co-digestion: Recent advances and prospects. Bioresource Technology, 370, 128501. https://doi.org/10.1016/j.biortech.2022.128501. DOI: https://doi.org/10.1016/j.biortech.2022.128501
Naseer, I. (2021). The efficacy of Deep Learning and Artificial Intelligence Framework in Enhancing Cybersecurity, Challenges and Future Prospects. Innovative Computer Sciences Journal. 7(1).
Bennett, C. C., & Hauser, K. (2013). Artificial intelligence framework for simulating clinical decision-making: A Markov decision process approach. Artificial Intelligence in Medicine, 57(1), 9–19. https://doi.org/10.1016/j.artmed.2012.12.003. DOI: https://doi.org/10.1016/j.artmed.2012.12.003
Rane, N., Choudhary, S., & Rane, J. (2023). Integrating ChatGPT, Bard, and leading-edge generative artificial intelligence in architectural design and engineering: applications, framework, and challenges. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4645595. DOI: https://doi.org/10.2139/ssrn.4645595
S. Amuthan, & N.C. Senthil Kumar. (2025). Emerging Trends in Deep Learning for Early Alzheimer’s Disease Diagnosis and Classification: A Comprehensive Review. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.739 DOI: https://doi.org/10.22399/ijcesen.739
Agnihotri, A., & Kohli, N. (2024). A novel lightweight deep learning model based on SqueezeNet architecture for viral lung disease classification in X-ray and CT images. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.425 DOI: https://doi.org/10.22399/ijcesen.425
Naresh Babu KOSURI, & Suneetha MANNE. (2024). Revolutionizing Facial Recognition: A Dolphin Glowworm Hybrid Approach for Masked and Unmasked Scenarios. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.560 DOI: https://doi.org/10.22399/ijcesen.560
M. Venkateswarlu, K. Thilagam, R. Pushpavalli, B. Buvaneswari, Sachin Harne, & Tatiraju.V.Rajani Kanth. (2024). Exploring Deep Computational Intelligence Approaches for Enhanced Predictive Modeling in Big Data Environments. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.676 DOI: https://doi.org/10.22399/ijcesen.676
Jha, K., Sumit Srivastava, & Aruna Jain. (2024). A Novel Texture based Approach for Facial Liveness Detection and Authentication using Deep Learning Classifier. International Journal of Computational and Experimental Science and Engineering, 10(3). https://doi.org/10.22399/ijcesen.369 DOI: https://doi.org/10.22399/ijcesen.369
Ponugoti Kalpana, Shaik Abdul Nabi, Panjagari Kavitha, K. Naresh, Maddala Vijayalakshmi, & P. Vinayasree. (2024). A Hybrid Deep Learning Approach for Efficient Cross-Language Detection. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.808 DOI: https://doi.org/10.22399/ijcesen.808
LAVUDIYA, N. S., & C.V.P.R Prasad. (2024). Enhancing Ophthalmological Diagnoses: An Adaptive Ensemble Learning Approach Using Fundus and OCT Imaging. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.678 DOI: https://doi.org/10.22399/ijcesen.678
T. Deepa, & Ch. D. V Subba Rao. (2025). Brain Glial Cell Tumor Classification through Ensemble Deep Learning with APCGAN Augmentation. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.803 DOI: https://doi.org/10.22399/ijcesen.803
Achuthankutty, S., M, P., K, D., P, K., & R, prathipa. (2024). Deep Learning Empowered Water Quality Assessment: Leveraging IoT Sensor Data with LSTM Models and Interpretability Techniques. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.512 DOI: https://doi.org/10.22399/ijcesen.512
Bolleddu Devananda Rao, & K. Madhavi. (2024). BCDNet: A Deep Learning Model with Improved Convolutional Neural Network for Efficient Detection of Bone Cancer Using Histology Images. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.430 DOI: https://doi.org/10.22399/ijcesen.430
N.B. Mahesh Kumar, T. Chithrakumar, T. Thangarasan, J. Dhanasekar, & P. Logamurthy. (2025). AI-Powered Early Detection and Prevention System for Student Dropout Risk. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.839 DOI: https://doi.org/10.22399/ijcesen.839
Boddupally JANAIAH, & Suresh PABBOJU. (2024). HARGAN: Generative Adversarial Network BasedDeep Learning Framework for Efficient Recognition of Human Actions from Surveillance Videos. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.587 DOI: https://doi.org/10.22399/ijcesen.587
J. Prakash, R. Swathiramya, G. Balambigai, R. Menaha, & J.S. Abhirami. (2024). AI-Driven Real-Time Feedback System for Enhanced Student Support: Leveraging Sentiment Analysis and Machine Learning Algorithms. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.780 DOI: https://doi.org/10.22399/ijcesen.780
TOPRAK, A. (2024). Determination of Colorectal Cancer and Lung Cancer Related LncRNAs based on Deep Autoencoder and Deep Neural Network. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.636 DOI: https://doi.org/10.22399/ijcesen.636
Johnsymol Joy, & Mercy Paul Selvan. (2025). An efficient hybrid Deep Learning-Machine Learning method for diagnosing neurodegenerative disorders. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.701 DOI: https://doi.org/10.22399/ijcesen.701
S. Esakkiammal, & K. Kasturi. (2024). Advancing Educational Outcomes with Artificial Intelligence: Challenges, Opportunities, And Future Directions. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.799 DOI: https://doi.org/10.22399/ijcesen.799
S. Leelavathy, S. Balakrishnan, M. Manikandan, J. Palanimeera, K. Mohana Prabha, & R. Vidhya. (2024). Deep Learning Algorithm Design for Discovery and Dysfunction of Landmines. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.686 DOI: https://doi.org/10.22399/ijcesen.686
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.