Deciphering Investment decision-making: Unraveling Overreaction, Herding and Overconfidence bias through Serial Mediation Analysis
DOI:
https://doi.org/10.22399/ijcesen.874Keywords:
Investor overaction, Overconfidence, Herding, Individual investors, PLSpredictAbstract
The current study aims to examine the influence of overreaction on the decision-making processes of investors. Also, this study investigates how herding and overconfidence serially mediate the connection between overreaction and investors’ decision-making. This study used a survey method to collect data using a structured questionnaire from 426 individual investors in the South Indian region. The proposed serial mediation model was analyzed using PLS-SEM. The findings of this study revealed that overreaction significantly affects investors’ decision-making. Herding and overconfidence partially and serially mediate the connection between overreaction and individual investors’ decision-making. These findings contribute to a deeper understanding of biases and their adverse effects on investment decisions, providing crucial insights for investors, financial advisors, and policymakers in the stock market. This study is the first to examine the role of herding and overconfidence in mediating the association between overreaction and the investment decisions of individual investors.
References
Abhijith, R., Bijulal, D. (2024). Heuristic biases influencing individual stock investment decisions: a hybrid fuzzy DELPHI-AHP-DEMATEL approach. Journal of Advances in Management Research. 21(4):627–648. https://doi.org/10.1108/JAMR-03-2024-0093 DOI: https://doi.org/10.1108/JAMR-03-2024-0093
Ahmad, M. (2020). Does underconfidence matter in short-term and long-term investment decisions? Evidence from an emerging market. Management Decision. 59(3):692–709. https://doi.org/10.1108/MD-07-2019-0972 DOI: https://doi.org/10.1108/MD-07-2019-0972
Ahmad, M., Shah, S. Z. A. (2022). Overconfidence heuristic-driven bias in investment decision-making and performance: mediating effects of risk perception and moderating effects of financial literacy. Journal of Economic and Administrative Sciences. 38(1):60–90. https://doi.org/10.1108/jeas-07-2020-0116 DOI: https://doi.org/10.1108/JEAS-07-2020-0116
Ahmad, M., Wu, Q. (2022). Does herding behavior matter in investment management and perceived market efficiency? Evidence from an emerging market. Management Decision. 60(8):2148–2173. https://doi.org/10.1108/MD-07-2020-0867 DOI: https://doi.org/10.1108/MD-07-2020-0867
Bakar, S., Yi, A. N. C. (2016). The Impact of Psychological Factors on Investors’ Decision Making in Malaysian Stock Market: A Case of Klang Valley and Pahang. Procedia Economics and Finance. 35(October 2015):319–328. https://doi.org/10.1016/s2212-5671(16)00040-x DOI: https://doi.org/10.1016/S2212-5671(16)00040-X
Baker, H. K., Ricciardi, V. (2014). How Biases Affect Investor Behaviour. The European Financial Review. DOI: https://doi.org/10.1002/9781118813454
Barber, B. M., Odean, T. (2001). Boys will be boys: Gender, overconfidence, and common stock investment. Quarterly Journal of Economics. 116(1):261–292. https://doi.org/10.1162/003355301556400 DOI: https://doi.org/10.1162/003355301556400
Bikhchandani, S., Sharma, S. (2000). Herd Behavior in Financial Markets. IMF Staff Papers. 47(3):279–310. https://doi.org/10.2307/3867650 DOI: https://doi.org/10.2307/3867650
Cao, M. M., Nguyen, N. T., Tran, T. T. (2021). Behavioral factors on individual investors’ decision making and investment performance: A survey from the Vietnam Stock Market. The Journal of Asian Finance, Economics and Business. 8(3):845–853.
Chiao, C., Hueng, C. J. (2005). Overreaction effects independent of risk and characteristics: Evidence from the Japanese stock market. Japan and the World Economy. 17(4):431–455. https://doi.org/10.1016/j.japwor.2004.04.003 DOI: https://doi.org/10.1016/j.japwor.2004.04.003
Choi, K. H., Yoon, S. M. (2020). Investor sentiment and herding behavior in the Korean stock market. International Journal of Financial Studies. 8(2):34. https://doi.org/10.3390/ijfs8020034 DOI: https://doi.org/10.3390/ijfs8020034
Conway, J. M., Lance, C. E. (2010). What reviewers should expect from authors regarding common method bias in organizational research. Journal of Business and Psychology. 25(3):325–334. https://doi.org/10.1007/s10869-010-9181-6 DOI: https://doi.org/10.1007/s10869-010-9181-6
Daniel, K., Hirshleifer, D., Subrahmanyam, A. (1998). Investor psychology and security market under‐and overreactions. The Journal of Finance. 53(6):1839–1885. https://doi.org/10.1111/0022-1082.00077 DOI: https://doi.org/10.1111/0022-1082.00077
Das, A. R., Panja, S. (2022). An Empirical Investigation on the Influence of Behavioural Factors on Investment Decision Making. Vision. 1–13. https://doi.org/10.1177/09722629221131101 DOI: https://doi.org/10.1177/09722629221131101
De Bondt, W. F., Thaler, R. (1985). Does the Stock Market Overreact? The Journal of Finance. 40(3):793–805. https://doi.org/10.1111/j.1540-6261.1985.tb05004.x DOI: https://doi.org/10.1111/j.1540-6261.1985.tb05004.x
De Oliveira Cardoso, N., Zorgi Salvador, E., Broch, G., Mette, F. M. B., Yoshinaga, C. E., de Lara Machado, W. (2024). Measuring behavioral biases in individual investors decision-making and sociodemographic correlations: a systematic review. Qualitative Research in Financial Markets. 16(4):636–659. https://doi.org/10.1108/QRFM-05-2022-0090 DOI: https://doi.org/10.1108/QRFM-05-2022-0090
Diamantopoulos, A., Siguaw, J. A. (2006). Formative versus reflective indicators in organizational measure development: A comparison and empirical illustration. British Journal of Management. 17(4):263–282. https://doi.org/10.1111/j.1467-8551.2006.00500.x DOI: https://doi.org/10.1111/j.1467-8551.2006.00500.x
Faul, F., Erdfelder, E., Buchner, A., Lang, A. G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods. 41(4):1149–1160. https://doi.org/10.3758/BRM.41.4.1149 DOI: https://doi.org/10.3758/BRM.41.4.1149
Graham, J. R. (1999). Herding among investment newsletters: Theory and evidence. Journal of Finance. 54(1):237–268. https://doi.org/10.1111/0022-1082.00103 DOI: https://doi.org/10.1111/0022-1082.00103
Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M. (2022). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) (3rd editio). Thousand Oaks: Sage. DOI: https://doi.org/10.1007/978-3-030-80519-7
Hair, J. F., Risher, J. J., Sarstedt, M., Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review. 31(1):2–24. https://doi.org/10.1108/EBR-11-2018-0203 DOI: https://doi.org/10.1108/EBR-11-2018-0203
Hair Jr, J., Hair Jr, J. F., Sarstedt, M., Ringle, C. M., Gudergan, S. P. (2017). Advanced issues in partial least squares structural equation modeling. (sage publications (ed.)). DOI: https://doi.org/10.15358/9783800653614
Henseler, J., Hubona, G., Ray, P. A. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management and Data Systems. 116(1):2–20. https://doi.org/10.1108/IMDS-09-2015-0382 DOI: https://doi.org/10.1108/IMDS-09-2015-0382
Henseler, J., Ringle, C. M., Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science. 43(1):115–135. https://doi.org/10.1007/s11747-014-0403-8 DOI: https://doi.org/10.1007/s11747-014-0403-8
Herlina, H., Hadianto, B., Winarto, J., Suwarno, N. A. N. (2020). The herding and overconfidence effect on the decision of individuals to invest stocks. Journal of Economics and Business. 3(4). https://doi.org/10.31014/aior.1992.03.04.288 DOI: https://doi.org/10.31014/aior.1992.03.04.288
Hong, H., Xu, S., Lee, C. C. (2020). Investor herding in the China stock market: an examination of CHINEXT. Romanian Journal of Economic Forecasting. 23(4):47–61.
Jabeen, S., Shah, S. Z. A., Sultana, N., Khan, A. (2020). Impact of socio-psychological factors on investment decisions: The mediating role of behavioral biases. Abasyn University Journal of Social Sciences. 13(1). DOI:10.34091/JASS.13.1.03 DOI: https://doi.org/10.34091/JASS.13.1.03
Jain, J., Walia, N., Gupta, S. (2020a). Evaluation of behavioral biases affecting investment decision making of individual equity investors by fuzzy analytic hierarchy process. Review of Behavioral Finance. 12(3):297–314. https://doi.org/10.1108/RBF-03-2019-0044
Jain, J., Walia, N., Gupta, S. (2020b). Evaluation of behavioral biases affecting investment decision making of individual equity investors by fuzzy analytic hierarchy process. Review of Behavioral Finance. 12(3):297–314. https://doi.org/10.1108/RBF-03-2019-0044 DOI: https://doi.org/10.1108/RBF-03-2019-0044
Jain, J., Walia, N., Kaur, M., Singh, S. (2022a). Behavioural biases affecting investors’ decision-making process: a scale development approach. Management Research Review. 45(8):1079–1098. https://doi.org/10.1108/MRR-02-2021-0139
Jain, J., Walia, N., Kaur, M., Singh, S. (2022b). Behavioural biases affecting investors’ decision-making process: a scale development approach. Management Research Review. 45(8):1079–1098. https://doi.org/10.1108/MRR-02-2021-0139 DOI: https://doi.org/10.1108/MRR-02-2021-0139
Jain, J., Walia, N., Kaur, M., Sood, K., Kaur, D. (2023). Shaping Investment Decisions Through Financial Literacy: Do Herding and Overconfidence Bias Mediate the Relationship? Global Business Review. https://doi.org/10.1177/09721509221147409 DOI: https://doi.org/10.1177/09721509221147409
Jain, J., Walia, N., Singh, S., Jain, E. (2022). Mapping the field of behavioural biases: a literature review using bibliometric analysis. Management Review Quarterly. 72(3):823–855. https://doi.org/10.1007/s11301-021-00215-y DOI: https://doi.org/10.1007/s11301-021-00215-y
Kahneman, D., Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk. In Econometrica 47(2). DOI: https://doi.org/10.2307/1914185
Kapoor, S., Prosad, J. M. (2017). Behavioural Finance: A Review. Procedia Computer Science. 122:50–54. https://doi.org/https://doi.org/10.1016/j.procs.2017.11.340 DOI: https://doi.org/10.1016/j.procs.2017.11.340
Kathpal, S., Akhtar, A., Zaheer, A., Khan, M. N. (2021). Covid-19 and heuristic biases: evidence from India. Journal of Financial Services Marketing. 26(4):305–316. https://doi.org/10.1057/s41264-021-00116-x DOI: https://doi.org/10.1057/s41264-021-00116-x
Kaur, M., Jain, J., Sood, K. (2023). All are investing in Crypto, I fear of being missed out: examining the influence of herding, loss aversion, and overconfidence in the cryptocurrency market with the mediating effect of FOMO. Quality and Quantity. 1–27. https://doi.org/10.1007/s11135-023-01739-z DOI: https://doi.org/10.1007/s11135-023-01739-z
Kausar, A., Taffler, R. J. (2005). Testing Behavioral Finance Models of Market Under- and Overreaction: Do they Really Work? SSRN Electronic Journal. 44. https://doi.org/10.2139/ssrn.873615 DOI: https://doi.org/10.2139/ssrn.873615
Kengatharan, L., Kengatharan, N. (2014). The Influence of Behavioral Factors in Making Investment Decisions and Performance: Study on Investors of Colombo Stock Exchange, Sri Lanka. Asian Journal of Finance & Accounting. 6(1):1. https://doi.org/10.5296/ajfa.v6i1.4893 DOI: https://doi.org/10.5296/ajfa.v6i1.4893
Khawaja, M. J., Alharbi, Z. N. (2021). Factors influencing investor behavior: an empirical study of Saudi Stock Market. International Journal of Social Economics. 48(4):587–601. https://doi.org/10.1108/IJSE-07-2020-0496 DOI: https://doi.org/10.1108/IJSE-07-2020-0496
Kock, F., Berbekova, A., Assaf, A. G. (2021). Understanding and managing the threat of common method bias: Detection, prevention and control. Tourism Management. 86:104330. https://doi.org/https://doi.org/10.1016/j.tourman.2021.104330 DOI: https://doi.org/10.1016/j.tourman.2021.104330
Kock, N. (2015). Common method bias in PLS-SEM : A full collinearity assessment approach. International Journal of E-Collaboration. 11(4):1–10. DOI:10.4018/ijec.2015100101 DOI: https://doi.org/10.4018/ijec.2015100101
Kumar, J., Rani, M., Rani, G., Rani, V. (2024). All are interesting to invest , I fear of missing out ( FOMO ): a comparative study among self-employed and salaried investors. Journal of Financial Regulation and Compliance. 32(5):646-664. https://doi.org/10.1108/JFRC-01-2024-0010 DOI: https://doi.org/10.1108/JFRC-01-2024-0010
Kumar, S., Goyal, N. (2015). Behavioural biases in investment decision making – a systematic literature review. Qualitative Research in Financial Markets. 7(1):88–108. https://doi.org/10.1108/QRFM-07-2014-0022 DOI: https://doi.org/10.1108/QRFM-07-2014-0022
Lakonishok, J., Shleifer, A., Vishny, R. W. (1992). The impact of institutional trading on stock prices. Journal of Financial Economics. 32(1):23–43. https://doi.org/10.1016/0304-405X(92)90023-Q DOI: https://doi.org/10.1016/0304-405X(92)90023-Q
Lee, Y. T., Liu, Y. J., Roll, R., Subrahmanyam, A. (2004). Order imbalances and market efficiency: Evidence from the Taiwan Stock Exchange. Journal of Financial and Quantitative Analysis. 39(2). https://doi.org/10.1017/s0022109000003094 DOI: https://doi.org/10.1017/S0022109000003094
Madaan, G., Singh, S. (2019). An analysis of behavioral biases in investment decision-making. International Journal of Financial Research. 10(4):55–67. https://doi.org/10.5430/ijfr.v10n4p55 DOI: https://doi.org/10.5430/ijfr.v10n4p55
Maheshwari, H., Samantaray, A. K., Panigrahi, R. R., & Jena, L. K. (2024). Financial literacy in predicting investment decisions: do attitude and overconfidence influence? International Journal of Social Economics. 52(2):220-235. https://doi.org/10.1108/IJSE-05-2023-0370 DOI: https://doi.org/10.1108/IJSE-05-2023-0370
Memon, M. A., Ting, H., Cheah, J.-H., Thurasamy, R., Chuah, F., Cham, T. H. (2020). Sample Size for Survey Research: Review and Recommendations. Journal of Applied Structural Equation Modeling. 4(2):1–20. https://doi.org/10.47263/jasem.4(2)01 DOI: https://doi.org/10.47263/JASEM.4(2)01
Metawa, N., Hassan, M. K., Metawa, S., Safa, M. F. (2019). Impact of behavioral factors on investors’ financial decisions: case of the Egyptian stock market. Nternational Journal of Islamic and Middle Eastern Finance and Management. 12(1):30–55. https://doi.org/10.1108/IMEFM-12-2017-0333 DOI: https://doi.org/10.1108/IMEFM-12-2017-0333
Munir, S., Chishti, M. F., Bashir, R. (2024). The aspects of behavioral finance with new insights: an analysis of individual investors at Pakistan Stock Exchange (PSX). Journal of Economic and Administrative Sciences. https://doi.org/10.1108/JEAS-11-2023-0306 DOI: https://doi.org/10.1108/JEAS-11-2023-0306
Nitzl, C., Roldan, J. L., Cepeda, G. (2016). c. Industrial Management and Data Systems. 116(9):1849–1864. https://doi.org/10.1108/IMDS-07-2015-0302 DOI: https://doi.org/10.1108/IMDS-07-2015-0302
Odean, T. (2002). Volume, volatility, price, and profit when all traders are above average. The Journal of Finance. 53(6):1887–1934. https://doi.org/10.1111/0022-1082.00078 DOI: https://doi.org/10.1111/0022-1082.00078
Pompian, M. M. (2012). Behavioral finance and investor types: managing behavior to make better investment decisions. DOI: https://doi.org/10.1002/9781119202417
Prosad, J. M., Kapoor, S., Sengupta, J. (2015). Behavioral biases of Indian investors: a survey of Delhi-NCR region. Qualitative Research in Financial Markets. 7(3):230–263. https://doi.org/10.1108/QRFM-04-2014-0012 DOI: https://doi.org/10.1108/QRFM-04-2014-0012
Ritika, Kishor, N. (2022). Development and validation of behavioral biases scale: a SEM approach. Review of Behavioral Finance. 14(2):237–259. https://doi.org/10.1108/RBF-05-2020-0087 DOI: https://doi.org/10.1108/RBF-05-2020-0087
Ritter, J. R. (2003). Behavioral finance. Pacific Basin Finance Journal. 11(4):429–437. https://doi.org/10.1016/S0927-538X(03)00048-9 DOI: https://doi.org/10.1016/S0927-538X(03)00048-9
Sarstedt, M., Ringle, C. M., Hair, J. F. (2021). Handbook of Market Research. Springer International Publishing (Issue July). Springer International Publishing. https://doi.org/10.1007/978-3-319-05542-8 DOI: https://doi.org/10.1007/978-3-319-05542-8
Sarwar, A., Afaf, G. (2016). A comparison between psychological and economic factors affecting individual investor’s decision-making behavior. Cogent Business & Management. 3(1):1232907. https://doi.org/10.1080/23311975.2016.1232907 DOI: https://doi.org/10.1080/23311975.2016.1232907
Sharma, A., Kumar, A. (2020). A review paper on behavioral finance: study of emerging trends. Qualitative Research in Financial Markets. 12(2):137–157. https://doi.org/10.1108/QRFM-06-2017-0050 DOI: https://doi.org/10.1108/QRFM-06-2017-0050
Shefrin, H., Statman, M. (1985). The disposition to sell winners too early and ride losers too long: Theory and evidence. The Journal of Finance. 40(3):777–790. DOI: https://doi.org/10.1111/j.1540-6261.1985.tb05002.x
Shefrin, H. (2007). Behavioral corporate finance: Decisions that create value. McGraw-Hill/Irwin, New York, NY.
Shmueli, G., Sarstedt, M., Hair, J. F., Cheah, J. H., Ting, H., Vaithilingam, S., Ringle, C. M. (2019). Predictive model assessment in PLS-SEM: guidelines for using PLSpredict. European Journal of Marketing. 53(11):2322–2347. https://doi.org/10.1108/EJM-02-2019-0189 DOI: https://doi.org/10.1108/EJM-02-2019-0189
Shrotryia, V. K., Kalra, H. (2023). COVID-19 and overconfidence bias: the case of developed, emerging and frontier markets. International Journal of Emerging Markets. 18(3):633–665. https://doi.org/10.1108/IJOEM-09-2020-1019 DOI: https://doi.org/10.1108/IJOEM-09-2020-1019
Shunmugasundaram, V., &Sinha, A. (2024). The impact of behavioral biases on investment decisions: a serial mediation analysis. Journal of Economics, Finance and Administrative Science. https://doi.org/10.1108/JEFAS-08-2023-0243 DOI: https://doi.org/10.1108/JEFAS-08-2023-0243
Souza, V. V., Souza, L. L. F., Oliveira, O., Souza, E. M. de, Costa, J. S. (2024). Do heuristics affect Brazilian investors’ decision-making process? Review of Behavioral Finance. 16(2):282–299. https://doi.org/10.1108/RBF-09-2022-0210 DOI: https://doi.org/10.1108/RBF-09-2022-0210
Tekçe, B., Yılmaz, N. (2015). Are individual stock investors overconfident? Evidence from an emerging market. Journal of Behavioral and Experimental Finance. 5:35–45. https://doi.org/10.1016/j.jbef.2015.02.003 DOI: https://doi.org/10.1016/j.jbef.2015.02.003
Waweru, N. M., Munyoki, E., Uliana, E. (2008). (2008). The effects of behavioural factors in investment decision-making: a survey of institutional investors operating at the Nairobi Stock Exchange. Nternational Journal of Business and Emerging Markets. 1(1):24–41. DOI: https://doi.org/10.1504/IJBEM.2008.019243
Yalcin, K. C., Tatoglu, E., Zaim, S. (2016). Developing an instrument for measuring the effects of heuristics on investment decisions. Kybernetes. 45(7):1052–1071.https://doi.org/10.1108/K-05-2015-0130 DOI: https://doi.org/10.1108/K-05-2015-0130
M.K. Sarjas, & G. Velmurugan. (2025). Bibliometric Insight into Artificial Intelligence Application in Investment. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.864 DOI: https://doi.org/10.22399/ijcesen.864
R. Logesh Babu, K. Tamilselvan, N. Purandhar, Tatiraju V. Rajani Kanth, R. Prathipa, & Ponmurugan Panneer Selvam. (2025). Adaptive Computational Intelligence Algorithms for Efficient Resource Management in Smart Systems. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.836 DOI: https://doi.org/10.22399/ijcesen.836
Shajeni Justin, & Tamil Selvan. (2025). A Systematic Comparative Study on the use of Machine Learning Techniques to Predict Lung Cancer and its Metastasis to the Liver: LCLM-Predictor Model. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.788 DOI: https://doi.org/10.22399/ijcesen.788
I. Prathibha, & D. Leela Rani. (2025). Rainfall Forecasting in India Using Combined Machine Learning Approach and Soft Computing Techniques : A HYBRID MODEL. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.785 DOI: https://doi.org/10.22399/ijcesen.785
Sagiraju, S., Mohanty, J. R., & Naik, A. (2025). Hyperparameter Tuning of Random Forest using Social Group Optimization Algorithm for Credit Card Fraud Detection in Banking Data. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.777 DOI: https://doi.org/10.22399/ijcesen.777
Taşkaya, S., Wu, D., Kurt, M., Liao, Y., Xu, J., & Liao, W. (2024). Exploring the Application of Building Information Modeling (BIM) in Town Planning: Key Roles in the Relationship Between Buildings and Parcels. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.459 DOI: https://doi.org/10.22399/ijcesen.459
Rakesh Jha, & Singh, M. K. (2024). Analysing the Impact of Social Influence on Electric Vehicle Adoption: A Deep Learning-Based Simulation Study in Jharkhand, India. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.371 DOI: https://doi.org/10.22399/ijcesen.371
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.