Analysis of Maximum Wind Speed in Iraq Using Nakagami Distribution

Authors

  • Lamiaa Abdul-Jabbar Dawod
  • Mustafa Abduljabbar Dawood
  • Waleed Ahmed Hassen Al-Nuaami University of Diyala

DOI:

https://doi.org/10.22399/ijcesen.900

Keywords:

Probability distribution, Nakagami distribution, Max Wind speed, Statistical distributions, Time series

Abstract

The assessment of the frequency of strongest gusts is a vital component in meteorological and climatological investigations with diverse objectives. this research analyzes the frequencies of maximum wind speed using the dataset of three selected cities Baghdad, Arbil, and Basrah in Iraq. Fitting the maximum monthly wind speed data from each city with Weibull, Gumbel, Normal, and Nakagami distributions, the parameters of these distributions are estimated through the method of maximum likelihood. Upon thorough examination of the Akaike information criterion (AIC), the most suitable distribution is selected. After all results done, Nakagami performance stood out amongst other distributions thanks to its thorough analysis and detailed graphic diagrams, making it a viable option for making decisions in different urban areas

References

Ali, M., Ali, S. A., Hussain, I., & Nawaz, F. (2020) Return level estimates of maximum temperature for different return period.; Journal of mechanics of continua and mathematical sciences 15(8);73-86 DOI:10.26782/jmcms.2020.08.00008 DOI: https://doi.org/10.26782/jmcms.2020.08.00008

Ji, D., Dong, W., Hong, T., Dai, T., Zheng, Z., Yang, S., & Zhu, X. (2018). Assessing parameter importance of the weather research and forecasting model based on global sensitivity analysis methods. Journal of Geophysical Research: Atmospheres, 123(9), 4443-4460. DOI: https://doi.org/10.1002/2017JD027348

Droste, A. M., Steeneveld, G. J., & Holtslag, A. A. (2018). Introducing the urban wind island effect. Environmental research letters, 13(9), 094007. DOI 10.1088/1748-9326/aad8ef DOI: https://doi.org/10.1088/1748-9326/aad8ef

Asghar, A. B., & Liu, X. (2018). Estimation of wind speed probability distribution and wind energy potential using adaptive neuro-fuzzy methodology. Neurocomputing, 287, 58-67. https://doi.org/10.1016/j.neucom.2018.01.077 DOI: https://doi.org/10.1016/j.neucom.2018.01.077

Devi, R., Gouda, K. C., & Lenka, S. (2022). Temperature-duration-frequency analysis over Delhi and Bengaluru city in India. Theoretical and Applied Climatology, 147, 291–305. https://doi.org/10.1007/s00704-021-03824-5 DOI: https://doi.org/10.1007/s00704-021-03824-5

Hansen, A. (2020). The three extreme value distributions: An introductory review. Frontiers in Physics, 8, 604053. https://doi.org/10.3389/fphy.2020.604053 DOI: https://doi.org/10.3389/fphy.2020.604053

Bhattacharya, P., & Bhattacharjee, R. (2010). A study on Weibull distribution for estimating the parameters. Journal of Applied Quantitative Methods, 5(2), 234-241.

Muraleedharan, G., Rao, A. D., Kurup, P. G., Nair, N. U., & Sinha, M. (2007). Modified Weibull distribution for maximum and significant wave height simulation and prediction. Coastal Engineering, 54(8), 630-638. https://doi.org/10.1016/j.coastaleng.2007.05.001 DOI: https://doi.org/10.1016/j.coastaleng.2007.05.001

Hesarkazzazi, S., Arabzadeh, R., Hajibabaei, M., Rauch, W., Kjeldsen, T. R., Prosdocimi, I., ... & Sitzenfrei, R. (2021). Stationary vs non-stationary modelling of flood frequency distribution across northwest England. Hydrological Sciences Journal, 66(4),729-744. https://doi.org/10.1080/02626667.2021.1884685 DOI: https://doi.org/10.1080/02626667.2021.1884685

Çağlan, A., & Dirican, B. (2024). Evaluation of Dosimetric and Radiobiological Parameters for Different TPS Dose Calculation Algorithms and Plans for Lung Cancer Radiotherapy. International Journal of Computational and Experimental Science and Engineering, 10(2). https://doi.org/10.22399/ijcesen.335 DOI: https://doi.org/10.22399/ijcesen.335

SUN, J., LI , Q., CHEN , M., & ZHANG , Z. (2019). The Key Factor Analysis to the Reservoirs on the Basis of Bayesian Law. International Journal of Computational and Experimental Science and Engineering, 5(1), 37–42. Retrieved from https://ijcesen.com/index.php/ijcesen/article/view/83 DOI: https://doi.org/10.22399/ijcesen.422691

Downloads

Published

2025-01-19

How to Cite

Lamiaa Abdul-Jabbar Dawod, Mustafa Abduljabbar Dawood, & Waleed Ahmed Hassen Al-Nuaami. (2025). Analysis of Maximum Wind Speed in Iraq Using Nakagami Distribution. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.900

Issue

Section

Research Article