Enhanced Bone Cancer Diagnosis through Deep Learning on Medical Imagery
DOI:
https://doi.org/10.22399/ijcesen.931Keywords:
Bone cancer detection, Deep learning, Histopathology images, IBCDNet, Clinical decision supportAbstract
Bone cancer, especially osteosarcoma, is an aggressive tumor with a highly complex histopathologic appearance that imposes considerable diagnostic difficulties. Although practical and efficient, traditional diagnostic methods and current deep learning models have a class imbalance, fused pixel intensity distributions, and tumor tissue heterogeneity that hinder diagnostic efficiency. These problems emphasize the demand of more sophisticated frameworks that specifically address the distinct properties of bone cancer histopathology images. To overcome these shortcomings, in this study proposes a deep learning framework, IBCDNet, to alleviate these limitations. Inspired by cutting-edge improvements in architecture (e.g., like attention, residual connections, and the proposed Intelligent Learning-Based Bone Cancer Detection (ILB-BCD) algorithm), the proposed framework combines different features from both public and private datasets in an efficient way. This allows for strong feature extraction, better learning from imbalanced data, and thus precise classification. The proposed model obtains state-of-the-art results of 98.39% on the Osteosarcoma Tumor Assessment Dataset, outperforming powerful baseline models like ResNet50, DenseNet121, and InceptionV3. This further affirms its diagnostic robustness with the respective precision (97.8%), recall (98.1%), and F1-score (98.0%) which shows a remarkable improvement We present a cost-effective framework for scalable real-world clinical applications to assist pathologists for early detection and accurate diagnosis of bone cancer. Those important gaps identified and addressed by this research contribute to the progress towards AI-driven healthcare and towards the global goals of precision medicine and enhanced patient outcomes.
References
Chengquan Guo, Yan Chen and Jianjun Li. (2024). Radiographic imaging and diagnosis of spinal bone tumors: AlexNet and ResNet for the classification of tumor malignancy. Journal of Bone Oncology. 48;1-10. https://doi.org/10.1016/j.jbo.2024.100629 DOI: https://doi.org/10.1016/j.jbo.2024.100629
Song, L., Li, C., Tan, L., Wang, M., Chen, X., Ye, Q., et al. (2024). A deep learning model to enhance the classification of primary bone tumors based on incomplete multimodal images in X-ray, CT, and MRI. Cancer Imaging. 24(1). https://doi.org/10.1186/s40644-024-00784-7 DOI: https://doi.org/10.1186/s40644-024-00784-7
Gawade, S., Bhansali, A., Patil, K., & Shaikh, D. (2023). Application of the convolutional neural networks and supervised deep-learning methods for osteosarcoma bone cancer detection. Healthcare Analytics. 3, 100153. https://doi.org/10.1016/j.health.2023.100153 DOI: https://doi.org/10.1016/j.health.2023.100153
Georgeanu, V. A., Mămuleanu, M., Ghiea, S., & Selișteanu, D. (2022). Malignant Bone Tumors Diagnosis Using Magnetic Resonance Imaging Based on Deep Learning Algorithms. Medicina. 58(5), 636. https://doi.org/10.3390/medicina58050636 DOI: https://doi.org/10.3390/medicina58050636
Kandasamy, V., Simic, V., Bacanin, N., & Pamucar, D. (2025). Optimized deep learning networks for accurate identification of cancer cells in bone marrow. Neural Networks. 181, 106822. https://doi.org/10.1016/j.neunet.2024.106822. DOI: https://doi.org/10.1016/j.neunet.2024.106822
Aarthy, R., Muthupriya, V., & Balaji, G. N. (2024). Detection of bone cancer based on a four-phase framework generative deep belief neural network in deep learning. Alexandria Engineering Journal. 109;394–407. https://doi.org/10.1016/j.aej.2024.08.094 DOI: https://doi.org/10.1016/j.aej.2024.08.094
S. Esakkiammal, & K. Kasturi. (2024). Advancing Educational Outcomes with Artificial Intelligence: Challenges, Opportunities, And Future Directions. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.799 DOI: https://doi.org/10.22399/ijcesen.799
Johnsymol Joy, & Mercy Paul Selvan. (2025). An efficient hybrid Deep Learning-Machine Learning method for diagnosing neurodegenerative disorders. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.701 DOI: https://doi.org/10.22399/ijcesen.701
Sampath, K., Rajagopal, S., & Chintanpalli, A. (2024). A comparative analysis of CNN-based deep learning architectures for early diagnosis of bone cancer using CT images. Scientific Reports. 14(1). https://doi.org/10.1038/s41598-024-52719-8 DOI: https://doi.org/10.1038/s41598-024-52719-8
Alabdulkreem, E., Saeed, M. K., Alotaibi, S. S., Allafi, R., Mohamed, A., & Hamza, M. A. (2023). Bone Cancer Detection and Classification Using Owl Search Algorithm With Deep Learning on X-Ray Images. IEEE Access, 11;109095–109103. https://doi.org/10.1109/access.2023.3319293 DOI: https://doi.org/10.1109/ACCESS.2023.3319293
Suganeshwari, G., Balakumar, R., Karuppanan, K., Prathiba, S. B., Anbalagan, S., & Raja, G. (2023). DTBV: A Deep Transfer-Based Bone Cancer Diagnosis System Using VGG16 Feature Extraction. Diagnostics. 13(4), 757. https://doi.org/10.3390/diagnostics13040757 DOI: https://doi.org/10.3390/diagnostics13040757
Hsieh, T.-C., Liao, C.-W., Lai, Y.-C., Law, K.-M., Chan, P.-K., & Kao, C.-H. (2021). Detection of Bone Metastases on Bone Scans through Image Classification with Contrastive Learning. Journal of Personalized Medicine. 11(12), 1248. https://doi.org/10.3390/jpm11121248 DOI: https://doi.org/10.3390/jpm11121248
Vezakis, I. A., Lambrou, G. I., & Matsopoulos, G. K. (2023). Deep Learning Approaches to Osteosarcoma Diagnosis and Classification: A Comparative Methodological Approach. Cancers. 15(8), 2290. https://doi.org/10.3390/cancers15082290 DOI: https://doi.org/10.3390/cancers15082290
Kanimozhi, S., R, S., & Chintanpalli, A. (2024). Recent Advancements in Feature Extraction and Classification Based Bone Cancer Detection. SSRN. https://doi.org/10.2139/ssrn.4689326 DOI: https://doi.org/10.2139/ssrn.4689326
Chu, J., & Khan, S. (2023). Transfer learning and data augmentation in osteosarcoma cancer detection. Journal of Emerging Investigators. https://doi.org/10.59720/22-285 DOI: https://doi.org/10.59720/22-285
Krishnamoorthy, P., & Madhurasree, G. (2023). Feature Extraction Based Machine Learning Approach for Bone Cancer Detection. Asian Journal of Engineering and Applied Technology. 12(2);1–6. https://doi.org/10.51983/ajeat-2023.12.2.3787 DOI: https://doi.org/10.51983/ajeat-2023.12.2.3787
Alsubai, S., Dutta, A. K., Alghayadh, F., Gilkaramenthi, R., Ishak, M. K., Karim, et al. (2024). Group Teaching Optimization With Deep Learning-Driven Osteosarcoma Detection Using Histopathological Images. IEEE Access. 12;34089–34098. https://doi.org/10.1109/access.2024.3371518 DOI: https://doi.org/10.1109/ACCESS.2024.3371518
Hussien Rahouma, K., & Salama Abdellatif, A. (2023). Bone osteosarcoma tumor classification. Indonesian Journal of Electrical Engineering and Computer Science. 31(1), 582. https://doi.org/10.11591/ijeecs.v31.i1.pp582-587. DOI: https://doi.org/10.11591/ijeecs.v31.i1.pp582-587
Ramasamy, M. D., Dhanaraj, R. K., Pani, S. K., Das, R. P., Movassagh, A. A., et al. (2023). An improved deep convolutionary neural network for bone marrow cancer detection using image processing. Informatics in Medicine Unlocked. 38, 101233. https://doi.org/10.1016/j.imu.2023.101233 DOI: https://doi.org/10.1016/j.imu.2023.101233
Jiang, X., Hu, Z., Wang, S., & Zhang, Y. (2023). Deep Learning for Medical Image-Based Cancer Diagnosis. Cancers. 15(14), 3608. https://doi.org/10.3390/cancers15143608 DOI: https://doi.org/10.3390/cancers15143608
Sharma, A., Yadav, D. P., Garg, H., Kumar, M., Sharma, B., & Koundal, D. (2021). Bone Cancer Detection Using Feature Extraction Based Machine Learning Model. Computational and Mathematical Methods in Medicine. 1–13. https://doi.org/10.1155/2021/7433186 DOI: https://doi.org/10.1155/2021/7433186
Anand, D. ., Arulselvi, G. ., Balaji, G. ., & Chandra, G. R. . . (2022). A Deep Convolutional Extreme Machine Learning Classification Method To Detect Bone Cancer From Histopathological Images. International Journal of Intelligent Systems and Applications in Engineering. 10(4);39–47. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/2194
Manjula Vasant Kiresur and Manoj P. (2021). Bone Cancer Detection Using Convolution Neural Network – An overview. International Journal of Creative Research Thoughts (IJCRT). 9(3);1-6.
Dr. G Manjula, Anusha, Divya H C, Nayana U S and Shwetha K.R. (2021). Bone Cancer Detection at Earlier Stage Using Convolutional Neural Network. IJARIIE. 7(2);1-7.
Ranjitha M M, Taranath N L, Darshan L M and C.K. Subbaraya. (2021). Detection Of Bone Cancer Using Ct Scan Images. Journal of Emerging Technologies and Innovative Research (JETIR). 6(5);28-32.
J Sindudevi And M.G.Kavitha. (2024). A Review On Bone Cancer Detection Using Convolutional Neural Network. International Journal of Creative Research Thoughts (IJCRT). 12(2);908-924.
Sivakumar D, Harsh K Jain, Ganesh Dattatray Bhagwat, Manoj Krishna Hegde and Natesh S. (2021). Bone Cancer Detection Using Machine Learning. International Research Journal of Engineering and Technology (IRJET). 8(8);1-7.
Shao, Xiaoguang; Zhang, Heng; Wang, Yanqing; Qian, Hongyang; Zhu, Yinjie; Dong, Baijun; et al. (2020). Deep convolutional neural networks combine Raman spectral signature of serum for prostate cancer bone metastases screening. Nanomedicine: Nanotechnology, Biology and Medicine. 1–25. https://doi:10.1016/j.nano.2020.102245 DOI: https://doi.org/10.1016/j.nano.2020.102245
N.B. Mahesh Kumar, T. Chithrakumar, T. Thangarasan, J. Dhanasekar, & P. Logamurthy. (2025). AI-Powered Early Detection and Prevention System for Student Dropout Risk. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.839 DOI: https://doi.org/10.22399/ijcesen.839
Saba, T. (2020). Recent advancement in cancer detection using machine learning: Systematic survey of decades, comparisons and challenges. Journal of Infection and Public Health. 13(9);1274–1289. https://doi.org/10.1016/j.jiph.2020.06.033 DOI: https://doi.org/10.1016/j.jiph.2020.06.033
D.Prathyusha, 2d.Gowri Sankar Reddy. (2023). Bone Cancer Detection Using Convolutional Neural Network. Journal of Emerging Technologies and Innovative Research (JETIR). 10(6)1-6.
Satheesh Kumar and Sathiyaprasad. B. (2021). Bone Cancer Detection Using Feature Extraction with Classification Using K-Nearest Neighbor and Decision Tree Algorithm. Smart Intelligent Computing and Communication Technology. 347-353. https://doi.org/10.3233/APC210064 DOI: https://doi.org/10.3233/APC210064
Chowdhury, A. A., Mahmud, S. M. H., Elahe, Md. F., Jahan, H., Shoombuatong, W., & Mahmud, M. (2023). Detection of Osteosarcoma using Deep Feature Extraction with Federated Learning and MLP from Histopathological Images. Research square. https://doi.org/10.21203/rs.3.rs-3620182/v1 DOI: https://doi.org/10.21203/rs.3.rs-3620182/v1
Vandana, B. S., & Alva, S. R. (2021). Deep Learning Based Automated tool for cancer diagnosis from bone histopathology images. 2021 International Conference on Intelligent Technologies (CONIT). 1–8. https://doi.org/10.1109/conit51480.2021.9498367 DOI: https://doi.org/10.1109/CONIT51480.2021.9498367
Abhilash Shukla, Atul Patel. (2020). Bone Cancer Detection from X-Ray and MRI Images through Image Segmentation Techniques. International Journal of Recent Technology and Engineering (IJRTE). 8(6);1-6. DOI: https://doi.org/10.35940/ijrte.F7159.038620
Anisuzzaman, D. M., Barzekar, H., Tong, L., Luo, J., & Yu, Z. (2021). A deep learning study on osteosarcoma detection from histological images. Biomedical Signal Processing and Control. 69, 102931. https://doi.org/10.1016/j.bspc.2021.102931 DOI: https://doi.org/10.1016/j.bspc.2021.102931
Magdy, O., Elaziz, M. A., Dahou, A., Ewees, A. A., Elgarayhi, A., & Sallah, M. (2024). Bone scintigraphy based on deep learning model and modified growth optimizer. Scientific Reports. 14(1). https://doi.org/10.1038/s41598-024-73991-8 DOI: https://doi.org/10.1038/s41598-024-73991-8
Chen, X., Chen, H., Wan, J., Li, J., & Wei, F. (2024). An enhanced AlexNet-Based model for femoral bone tumor classification and diagnosis using magnetic resonance imaging. Journal of Bone Oncology. 48, 100626. https://doi.org/10.1016/j.jbo.2024.100626 DOI: https://doi.org/10.1016/j.jbo.2024.100626
Chen, W., Ayoub, M., Liao, M., Shi, R., Zhang, M., Su, F., Huang, Z., Li, Y., Wang, Y., & Wong, K. K. L. (2023). A fusion of VGG-16 and ViT models for improving bone tumor classification in computed tomography. Journal of Bone Oncology. 43, 100508. https://doi.org/10.1016/j.jbo.2023.100508 DOI: https://doi.org/10.1016/j.jbo.2023.100508
Zhao, X., Dong, Y., Xu, L., Shen, Y., Qin, G., & Zhang, Z. (2024). Deep bone oncology Diagnostics: Computed tomography based Machine learning for detection of bone tumors from breast cancer metastasis. Journal of Bone Oncology. 48, 100638. https://doi.org/10.1016/j.jbo.2024.100638 DOI: https://doi.org/10.1016/j.jbo.2024.100638
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.