An Intelligent Intrusion Detection System for VANETs Using Adaptive Fusion Models
DOI:
https://doi.org/10.22399/ijcesen.935Keywords:
VANETs, Cyber-Physical Systems (CPS), Intelligent Transportation Systems, Adaptive Fusion Intrusion, Detection ModelAbstract
Vehicular Ad Hoc Networks (VANETs) play a vital role in the development of Cyber-Physical Systems (CPS) to enable real-time communication for improving road safety and traffic efficiency. Due to the VANETs' decentralized and dynamic nature, they are prone to various types of cyber-attacks, including intrusion, spoofing, and denial-of-service (DoS) attacks. This article presents an Adaptive Fusion Intrusion Detection Model (AFIDM), a multi-level framework that uses machine learning techniques, such as Random Forest, XGBoost, Decision Trees, and K-Nearest Neighbor (KNN), to deal with such vulnerabilities. AFIDM also employs a dynamic weight adjusting mechanism and an adaptive feedback loop to adapt to the evolving threats and achieve better detection accuracy. AFIDM achieved 98.7% accuracy, 96.5% precision, and recall of 95.8% on the VeReMi dataset used for training and validation and outperformed other baseline models. With low latency and scalability, the proposed model presents a robust solution for real-time intrusion detection in VANETs for the secure and efficient operation of intelligent transportation systems
References
Y. Yigit, I. Panitsas, L. Maglaras, L. Tassiulas and B. Canberk, (2024). Cyber-Twin: Digital Twin-Boosted Autonomous Attack Detection for Vehicular Ad-Hoc Networks, ICC 2024 - IEEE International Conference on Communications, Denver, CO, USA, pp. 2167-2172, doi: 10.1109/ICC51166.2024.10622784. DOI: https://doi.org/10.1109/ICC51166.2024.10622784
N. A. Al-Khulaidi, A. T. Zahary, A. A. Al-Shargabi and M. A. S. Hazaa, (2024). Machine Learning for Intrusion Detection in Vehicular Ad-hoc Networks (VANETs): A Survey, 2024 4th International Conference on Emerging Smart Technologies and Applications (eSmarTA), Sana'a, Yemen, pp. 1-10, doi: 10.1109/eSmarTA62850.2024.10639016. DOI: https://doi.org/10.1109/eSmarTA62850.2024.10639016
Venkatasamy, T., Hossen, M.J., Ramasamy, G. et al. (2024). Intrusion detection system for V2X communication in VANET networks using machine learning-based cryptographic protocols. Sci Rep 14, 31780 https://doi.org/10.1038/s41598-024-82313-x DOI: https://doi.org/10.1038/s41598-024-82313-x
G, K., & E, P. (2024). A hybrid CNN-GRU-based intrusion detection system for secure communication in vehicular adhoc network. Information Security Journal: A Global Perspective, 1–11. https://doi.org/10.1080/19393555.2024.2361244 DOI: https://doi.org/10.1080/19393555.2024.2361244
Baharlouei, H., Makanju, A., & Zincir-Heywood, N. (2024). ADVENT: Attack/Anomaly Detection in VANETs. arXiv. https://arxiv.org/abs/2401.08564
T. N. Canh and X. HoangVan, (2023) Machine Learning-Based Malicious Vehicle Detection for Security Threats and Attacks in Vehicle Ad-Hoc Network (VANET) Communications, RIVF International Conference on Computing and Communication Technologies (RIVF), Hanoi, Vietnam, 2023, pp. 206-211, doi: 10.1109/RIVF60135.2023.10471804. DOI: https://doi.org/10.1109/RIVF60135.2023.10471804
Ahsan, S. I., Legg, P., & Alam, S. M. I. (2024). Privacy-Preserving Intrusion Detection in Software-defined VANET using Federated Learning with BERT. arXiv. https://arxiv.org/abs/2401.07343
A. R. Gad, A. A. Nashat and T. M. Barkat, (2021) Intrusion Detection System Using Machine Learning for Vehicular Ad Hoc Networks Based on ToN-IoT Dataset, IEEE Access, vol. 9, pp. 142206-142217, doi: 10.1109/ACCESS.2021.3120626. DOI: https://doi.org/10.1109/ACCESS.2021.3120626
Divya Mishra, Suveg Moudgi, Deepali virmani, Yunus Parvej Faniband, Aslam B Nandyal, Prashant Kumar Sahu, Gurwinder Singh,” A Mathematical Framework for Enhancing IOT Security in VANETs: Optimizing Intrusion Detection Systems through Machine Learning Algorithms”,Communications on Applied Nonlinear Analysis, https://doi.org/10.52783/cana.v31.1488 DOI: https://doi.org/10.52783/cana.v31.1488
Y. Zeng, M. Qiu, D. Zhu, Z. Xue, J. Xiong and M. Liu, "DeepVCM: A Deep Learning Based Intrusion Detection Method in VANET," 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), Washington, DC, USA, 2019, pp. 288-293, doi: 10.1109/BigDataSecurity-HPSC-IDS.2019.00060. DOI: https://doi.org/10.1109/BigDataSecurity-HPSC-IDS.2019.00060
Aziz, S., Faiz, M. T., Adeniyi, A. M., Loo, K.-H., Hasan, K. N., Xu, L., & Irshad, M. (2022). Anomaly Detection in the Internet of Vehicular Networks Using Explainable Neural Networks (xNN). Mathematics, 10(8), 1267. https://doi.org/10.3390/math10081267 DOI: https://doi.org/10.3390/math10081267
Arya, M., Sastry, H., Dewangan, B. K., Rahmani, M. K. I., Bhatia, S., Muzaffar, A. W., & Bivi, M. A. (2023). Intruder Detection in VANET Data Streams Using Federated Learning for Smart City Environments. Electronics, 12(4), 894. https://doi.org/10.3390/electronics12040894 DOI: https://doi.org/10.3390/electronics12040894
Bangui, H., Ge, M. & Buhnova, B. (2022). A hybrid machine learning model for intrusion detection in VANET. Computing 104, 503–531 https://doi.org/10.1007/s00607-021-01001-0
A. A. Aboelfottoh and M. A. Azer, (2022). Intrusion Detection in VANETs and ACVs using Deep Learning, 2022 2nd International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), Cairo, Egypt, pp. 241-245, doi: 10.1109/MIUCC55081.2022.9781691. DOI: https://doi.org/10.1109/MIUCC55081.2022.9781691
Ben Rabah, N., Idoudi, H. (2023). A Machine Learning Framework for Intrusion Detection in VANET Communications. In: Daimi, K., Alsadoon, A., Peoples, C., El Madhoun, N. (eds) Emerging Trends in Cybersecurity Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-09640-2_10 DOI: https://doi.org/10.1007/978-3-031-09640-2_10
Hind Bangui, Mouzhi Ge, and Barbora Buhnova. (2022). A hybrid machine learning model for intrusion detection in VANET. Computing 104(3);503–531. https://doi.org/10.1007/s00607-021-01001-0 DOI: https://doi.org/10.1007/s00607-021-01001-0
B. Karthiga, Danalakshmi Durairaj, Nishad Nawaz, Thiruppathy Kesavan Venkatasamy, Gopi Ramasamy, A. Hariharasudan, and Hasan Ali Khattak. (2022). Intelligent Intrusion Detection System for VANET Using Machine Learning and Deep Learning Approaches. Wirel. Commun. Mob. Comput. https://doi.org/10.1155/2022/5069104 DOI: https://doi.org/10.1155/2022/5069104
Hassan F, Yu J, Syed ZS, Ahmed N, Reshan MSA, Shaikh A. (2023). Achieving model explainability for intrusion detection in VANETs with LIME. Peer J Computer Science 9:e1440 https://doi.org/10.7717/peerj-cs.1440 DOI: https://doi.org/10.7717/peerj-cs.1440
Manderna, A., Kumar, S., Dohare, U., Aljaidi, M., Kaiwartya, O., & Lloret, J. (2023). Vehicular Network Intrusion Detection Using a Cascaded Deep Learning Approach with Multi-Variant Metaheuristic. Sensors, 23(21), 8772. https://doi.org/10.3390/s23218772 DOI: https://doi.org/10.3390/s23218772
Fei, Li & Jiayan, Zhang & Szczerbicki, Edward & Jiaqi, Song & Ruxiang, Li & Renhong, Diao. (2020). Deep Learning-Based Intrusion System for Vehicular Ad Hoc Networks. Computers, Materials & Continua. 65. 653-681. 10.32604/cmc.2020.011264. DOI: https://doi.org/10.32604/cmc.2020.011264
M Shanthalakshmi, Susmita mishra, V Jananee, P Narayana Perumal and S Manoj Jayakar (2022), Identification of Casting Product Surface Quality Using Alex net and Le-net CNN Models, Journal of Physics: Conference Series, Volume 2335, International (Virtual) Conference on Recent Advances in Electrical, Electronics, Ubiquitous Communication and Computational Intelligence, J. Phys.: Conf. Ser. 2335 012031 DOI 10.1088/1742-6596/2335/1/012031 DOI: https://doi.org/10.1088/1742-6596/2335/1/012031
S. Keerthana, N. Deepika, E. Pooja, I. Nandhini, M. Shanthalakshmi and G. R. Khanaghavalle, (2024). An effective approach for detecting deepfake videos using Long Short-Term Memory and ResNet, International Conference on Communication, Computing and Internet of Things (IC3IoT), Chennai, India, 2024, pp. 1-5, doi: 10.1109/IC3IoT60841.2024.10550265. DOI: https://doi.org/10.1109/IC3IoT60841.2024.10550265
Jananee Vinayagam, Shanthalakshmi Murugan, Sherine Glory Jesu, Govindharajalu Kaliayaperumal Vaidhya, Nikghamanth Seshadri Narayanan, Neya Babu Thayil; (2023). Detection of diabetic retinopathy using AlexNet and lenet CNN models. AIP Conf. Proc. 2790 (1): 020014. https://doi.org/10.1063/5.0152433 DOI: https://doi.org/10.1063/5.0152433
Jananee Vinayagam, Shanthalakshmi Murugan, Susmita Mishra, Lincy Jemina Samuel, Raashmi Prabakar, Mannuru Shalini; (2023). An approach for devising stenography application using cross modal attention. AIP Conf. Proc. 2790(1); 020025. https://doi.org/10.1063/5.0152434 DOI: https://doi.org/10.1063/5.0152434
Hajira Batool, Adeel Anjum, Abid Khan, Stefano Izzo, Carlo Mazzocca, Gwanggil Jeon, (2024). A secure and privacy preserved infrastructure for VANETs based on federated learning with local differential privacy, Information Sciences, 652,119717, https://doi.org/10.1016/j.ins.2023.119717. DOI: https://doi.org/10.1016/j.ins.2023.119717
Bandla Raghuramaiah, & Suresh Chittineni. (2025). BCDNet: An Enhanced Convolutional Neural Network in Breast Cancer Detection Using Mammogram Images. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.811 DOI: https://doi.org/10.22399/ijcesen.811
Nennuri, R., S. Iwin Thanakumar Joseph, B. Mohammed Ismail, & L.V. Narasimha Prasad. (2024). A Hybrid Probabilistic Graph Based Community Clustering Model for Large Social Networking Link Prediction Data. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.574 DOI: https://doi.org/10.22399/ijcesen.574
Simhadri Naidu Surapu, Kanusu Srinivasa Rao, & V. Ratnakumari Challa. (2025). Aerobic Stress Detection in Aquatic Environments with Water Quality Data Using Hybrid Deep Learning Based ConvRec Model. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.793 DOI: https://doi.org/10.22399/ijcesen.793
Ganta, S. R., & Naga Malleswara Rao Nallamothu. (2025). A dynamic integrity and data confidentiality based wireless N2N data communication and security protocol on large networks. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.720 DOI: https://doi.org/10.22399/ijcesen.720
M. Shanthalakshmi, & R.S. Ponmagal. (2025). Optimizing Secure Communication in Intelligent Transportation Networks with Certificate-less Authorization in VANETs. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.934 DOI: https://doi.org/10.22399/ijcesen.934
Prasada, P., & Prasad, D. S. (2024). Blockchain-Enhanced Machine Learning for Robust Detection of APT Injection Attacks in the Cyber-Physical Systems. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.539 DOI: https://doi.org/10.22399/ijcesen.539
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.