Deep Learning Based COVID-19 Detection Using Computed Tomography Images

Authors

DOI:

https://doi.org/10.22399/ijcesen.963

Keywords:

COVID-19, deep neural network, CT images, deep learning

Abstract

The infectious coronavirus disease (COVID-19), seen in Wuhan city of China in December 2019, led to a global pandemic, resulting in countless deaths. The healthcare sector has become extensively use of deep learning (DL), a method that is currently quite popular. The aim of this study is to identify the best and most successful deep learning model and optimizer approach combination for COVID-19 diagnosis. For this reason, several DL methods and optimizer techniques are tested on two comprehensive public data set  to select the best DL model with optimizer technique. A variety of performance evaluation metrics, including f-score, precision, specificity, and accuracy, were used to assess the models' effectiveness. The experimental results show that the most suitable and effective architecture is DenseNet-201 in the network comparison, which achieved a 98% accuracy rate using the AdaGrad optimizer and 200 iterations. 

References

IS. Minaee, R. Kafieh, M. Sonka, S. Yazdani, and G. J. Soufi. (2020). Deep-covid: Predicting covid-19 from chest X-ray images using deep transfer learning. Med. Image Anal., 65; 101794. DOI: 10.1016/j.media.2020.101794. DOI: https://doi.org/10.1016/j.media.2020.101794

A. Amyar, R. Modzelewski, H. Li, and S. Ruan. (2020). Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and segmentation. Comput. Biol. Med., 126; 104037. DOI: 10.1016/j.compbiomed.2020.104037. DOI: https://doi.org/10.1016/j.compbiomed.2020.104037

M. M. Islam, F. Karray, R. Alhajj and J. Zeng. (2021). A review on deep learning techniques for the diagnosis of novel coronavirus (COVID-19). IEEE Access, 9; 30551–30572, DOI: 10.1109/ACCESS. 2021.3058537.

S. Wang, B. Kang, J. Ma, X. Zeng, M. Xiao, J. Guo, M. Cai, J. Yang, Y. Li, X. Meng and B. Xu. (2021). A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19). Eur. Radiol., 31(8); 6096-6104. DOI: 10.1007/s00330-021-07715-1. DOI: https://doi.org/10.1007/s00330-021-07715-1

G.D. Rubin, C.J. Ryerson, L.B. Haramati, N. Sverzellati, J.P. Kanne, S. Raoof, N.W. Schluger, A. Volpi, J.J. Yim, I.B.K. Martin, D.J. Anderson, C. Kong, T. Altes, A. Bush, S.R. Desai, J. Goldin, J.M. Goo, M. Humbert, Y. Inoue, H U. Kauczor, F. Luo, P.J. Mazzone, M. Prokop, M.Remy-Jardin, L. Richeldi, C.M. Schaefer-Prokop, N. Tomiyama, A.U. Wells and A.N. Leung. (2020). The role of chest imaging in patient management during the COVID-19 pandemic: a multinational consensus statement from the Fleischner Society. Radiology, 296 (11); 172–180,. DOI: 10.1016/j.chest.2020.04.003. DOI: https://doi.org/10.1148/radiol.2020201365

F. Akba, I. T. Medeni, M. S. Guzel, and I. Askerzade. (2021). Manipulator Detection in Cryptocurrency Markets Based on Forecasting Anomalies. IEEE Access, 9; 108819–108831,. DOI: 10.1109/ACCESS. 2021.3101528

R. Sille, T. Choudhury, P. Chauhan, and D. Sharma. (2021). Dense hierarchical CNN – A unified approach for brain tumor segmentation. Revue d'Intelligence Artificielle, 35(3); 223–233,. DOI: 10.18280/ria. 350306. DOI: https://doi.org/10.18280/ria.350306

A. A. Yilmaz. (2022). A novel hyperparameter optimization aided hand gesture recognition framework based on deep learning algorithms. Traitement du Signal, 39(3); 823–833. DOI: 10.18280/ts.390307 DOI: https://doi.org/10.18280/ts.390307

A. A. Yilmaz. (2022). Intrusion detection in computer networks using optimized machine learning algorithms. 3rd Int. Informatics and Software Eng. Conf. (IISEC), Ankara, Turkey. DOI: https://doi.org/10.1109/IISEC56263.2022.9998258

A. A. Yılmaz. (2024). A machine learning-based framework using the particle swarm optimization algorithm for credit card fraud detection. Commun. Fac. Sci. Univ. Ankara Ser. A2-A3 Phys. Sci. Eng., 66, (1); 82–94. DOI: 10.33769/aupse.1361266. DOI: https://doi.org/10.33769/aupse.1361266

S. Bhattacharya, P. K. R. Maddikunta, Q. Pham, T. R. Gadekallu, S. R. Krishnan, C. L. Chowdhary, M. Alazab And Md. J. Piran. (2021). Deep learning and medical image processing for coronavirus (COVID-19) pandemic: A survey. “Sustain. Cities Soc., 65; 102589. DOI: 10.1016/j.scs.2020.102589. DOI: https://doi.org/10.1016/j.scs.2020.102589

Ş. Özsarı, F. Z. Ortak, M. S. Güzel, M. B. Başkır and G. E. Bostanci. (2023). ML based prediction of COVID-19 diagnosis using statistical tests. Commun. Fac. Sci. Univ. Ankara Ser. A2-A3 Phys. Sci. Eng., 65, (2); 79–99. DOI: 10.33769/aupse.1227857. DOI: https://doi.org/10.33769/aupse.1227857

F. Shan et al., "Lung infection quantification of COVID-19 in CT images with deep learning," arXiv preprint arXiv:2003.04655, 2020. DOI: 10.1002/mp.14609. DOI: https://doi.org/10.1002/mp.14609

A. I. Khan, J. L. Shah, and M. M. Bhat. (2020). CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest X-ray images. Comput. Meth. Prog. Biomed., 196; 105581. DOI: 10.1016/j.cmpb.2020.105581. DOI: https://doi.org/10.1016/j.cmpb.2020.105581

J. Zhao, Y. Zhang, X. He, and P. Xie. (2020). COVID-CT-dataset: a ct scan dataset about covid-19. arXiv preprint arXiv:2003.13865

E. Soares, P. Angelov, S. Biaso, M. H. Froes, and D. K. Abe. (2020). SARS-CoV-2 CT-scan dataset: A large dataset of real patients CT scans for SARS- CoV-2 identification. medRxiv. DOI: 10.1101/2020.04.24.20078584. DOI: https://doi.org/10.1101/2020.04.24.20078584

K. He, X. Zhang, S. Ren, and J. Sun. (2015). Deep residual learning for image recognition. arXiv preprint arXiv: 1512.03385 DOI: https://doi.org/10.1109/CVPR.2016.90

O. Ronneberger, P. Fischer, and T. Brox. (2015). U-Net: Convolutional networks for biomedical image segmentation," Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, Springer, Cham, pp. 234–241. DOI: https://doi.org/10.1007/978-3-319-24574-4_28

F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer. (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv preprint arXiv:1602.07360.

A. Krizhevsky, I. Sutskever, and G. Hinton, (2012). Imagenet classification with deep convolutional neural networks. Int. Conf. Neural Inf. Process. Syst., pp. 1097–1105.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In Proc. of CVPR, pp. 4510–4520. DOI: https://doi.org/10.1109/CVPR.2018.00474

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. (2020) Densely connected convolutional networks. In Proc. of CVPR, pp. 1–8.

D. P. Kingma and J. Ba. (2014). Adam: A method for stochastic optimization," arXiv preprint arXiv:1412.6980.

J. Duchi, E. Hazan, and Y. Singer. (2011). Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12(7); 2121–2159.

R. M. Gower, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, and P. Richtárik. (2019). SGD: general analysis and improved rates. Int. Conf. Mach. Learn., pp. 5200–5209.

T. Tijmen. Lecture slides on neural networks. (2012). http://www.cs.toronto.edu/tijmen/csc321/slides/lecture slides lec6.pdf (Accessed Jan. 1, 2025)

X. Wang, X. Deng, Q. Fu, Q. Zhou, J. Feng, H. Ma, W. Liu, C. Zheng. (2020). A weakly-supervised framework for COVID-19 classification and lesion localization from chest CT. IEEE Trans. Med. Imaging, 39(8); 2615–2625. DOI: 10.1109/TMI.2020. 2995965. DOI: https://doi.org/10.1109/TMI.2020.2995965

F. Liao, M. Liang, Z. Li, X. Hu, and S. Song. (2019). Evaluate the malignancy of pulmonary nodules using the 3-D deep leaky noisy-OR network. IEEE Trans. Neural Netw. Learn. Syst., 30(11), 3484–3495. DOI: 10.1109/TNNLS.2019.2892409. DOI: https://doi.org/10.1109/TNNLS.2019.2892409

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. (2016). Learning deep features for discriminative localization. In Proc. of CVPR, pp. 2921–2929. DOI: https://doi.org/10.1109/CVPR.2016.319

A. Jaiswal, N. Gianchandani, D. Singh, V. Kumar, and M. Kaur. (2020). Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning. J. Biomol. Struct. Dyn., 39(15); 4700–4708. DOI: 10.1080/07391102.2020.1788642. DOI: https://doi.org/10.1080/07391102.2020.1788642

Y. Song, S. Zheng, L. Li, X. Zhang, X. Zhang, Z. Huang, J. Chen, R. Wang, H. Zhao, Y. Chong, J. Shen, Y. Zha and Y. Yang. (2021). Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images. IEEE/ACM Trans. Comput. Biol. Bioinf. DOI: 10.1109/TCBB.2021.3065361. DOI: https://doi.org/10.1109/TCBB.2021.3065361

X. He, X. Yang, S. Zhang, J. Zhao, Y. Zhang, E. Xing and P. Xie. (2020). Sample efficient deep learning for COVID-19 diagnosis based on CT scans. medRxiv. DOI: 10.1101/2020.04.13.20063941. DOI: https://doi.org/10.1101/2020.04.13.20063941

X. Wu, H. Hui, M. Niu, L. Li, L. Wang, B. He, X. Yang, L. Li, H. Li, J. Tian and Y. Zha. (2020). Deep learning-based multi-view fusion model for screening 2019 novel coronavirus pneumonia: a multicentre study. Eur. J. Radiol., 128; 109041. DOI: 10.1016/j.ejrad.2020.109041. DOI: https://doi.org/10.1016/j.ejrad.2020.109041

W. Kntar. (2019). Fuzzy color image enhancement algorithm.https://github.com/WaseemKn/FuzzyColorImageEnhancement-FuzzyLogicCourse-ITE5thYear?tab=readme-ov-file (Accessed Jan. 1, 2025)

T. Bardak and S. Bardak. (2017). Prediction of wood density by using red-green-blue (RGB) color and fuzzy logic techniques. J. Polytech., 20; 979–985. DOI: 10.2339/politeknik.369132. DOI: https://doi.org/10.2339/politeknik.369132

J. Arnal and L. Súcar. (2020). Hybrid filter based on fuzzy techniques for mixed noise reduction in color images. Appl. Sci., 10(1); 243. DOI: 10.3390/app10010243. DOI: https://doi.org/10.3390/app10010243

J. M. Soto-Hidalgo, D. Sanchez, J. Chamorro-Martinez, and P. M. Martínez-Jimenez. (2019). Color comparison in fuzzy color spaces, Fuzzy Sets Syst., 390; 160–182 DOI: 10.1016/j.fss.2019.09.013. DOI: https://doi.org/10.1016/j.fss.2019.09.013

S. Ruder. (2016). An overview of gradient descent optimization algorithms. arXiv preprint arXiv: 1609.04747.

V. Nair and G. E. Hinton. (2010). Rectified linear units improve restricted Boltzmann machines. In Proc. of ICML, pp. 807–814

Naresh Babu KOSURI, & Suneetha MANNE. (2024). Revolutionizing Facial Recognition: A Dolphin Glowworm Hybrid Approach for Masked and Unmasked Scenarios. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.560 DOI: https://doi.org/10.22399/ijcesen.560

Agnihotri, A., & Kohli, N. (2024). A novel lightweight deep learning model based on SqueezeNet architecture for viral lung disease classification in X-ray and CT images. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.425 DOI: https://doi.org/10.22399/ijcesen.425

Anakal, S., K. Krishna Prasad, Chandrashekhar Uppin, & M. Dileep Kumar. (2025). Diagnosis, visualisation and analysis of COVID-19 using Machine learning . International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.826 DOI: https://doi.org/10.22399/ijcesen.826

Say, A., Çakır, D., AVRAMESCU, T., USTUN, G., NEAGOE, D., KAHVECİ, M., … KOMOREK, J. (2024). Examining the Prevalence of Long-Covid Symptoms: A Cross-Sectional Study. International Journal of Computational and Experimental Science and Engineering, 10(1). https://doi.org/10.22399/ijcesen.243 DOI: https://doi.org/10.22399/ijcesen.243

Downloads

Published

2025-02-08

How to Cite

Yılmaz, A. A., & Aslan, O. (2025). Deep Learning Based COVID-19 Detection Using Computed Tomography Images. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.963

Issue

Section

Research Article