SWAT-MODFLOW Model for Groundwater Recharge Variation Assessment: Lower Zab River Basin, Northeastern Iraq

Authors

  • Mohammed Jalel Rahem Civil Engineering Department, College of Engineering, Wasit University, Wasit 52000, Iraq
  • Ruqayah Mohammed

DOI:

https://doi.org/10.22399/ijcesen.1674

Keywords:

Basin management, Lesser Zab Basin, Land use/land cover, Sustainable Management, Variation detection

Abstract

For surface and groundwater simulations, recharge is a fundamental water balance unit. Yet, measuring its regional spatiotemporal variation poses a substantial challenge. Mathematical and empirical simulation are the most frequently used approaches at the basin scales. However, the accuracy and dependability of integrated models may be limited due to the limitless number of unknowns and uncertainties they contain. In the Lesser Zab River Basin, A QSWATMOD variant was suggested for evaluating groundwater recharge in northeastern Iraq.  The paired version was calibrated using a hydraulic head and daily circulating drift.  In comparison to the SWAT version, the QSWATMOD version performed well throughout the flow drift simulation.  The results of the study verified that during the predicted period, the watershed saw significant fluctuations in groundwater recharge.  The wet season is when a significant amount of recharge takes place.  It makes a significant contribution to the region's average yearly precipitation.  The water stability components were assessed locally, and the direct waft additives (lateral and surface) demonstrated significant contributions.  All things considered, the QSWATMOD model predicted groundwater recharge in the study area with a respectable degree of accuracy.

References

[1] Arshad, A., Mirchi, A., Samimi, M., Ahmad, B., (2022). Combining Downscaled-GRACE Data with SWAT to Improve the Estimation of Groundwater Storage and Depletion Variations in the Irrigated Indus Basin (IIB). Sci. Total Environ., 838, 156044.

[2] Aslam, R.A., Shrestha, S., Usman, M.N., Khan, S.N., Ali, S., Sharif, M.S., Sarwar, M.W., Saddique, N., Sarwar, A., Ali, M.U., et al., (2022). Integrated SWAT-MODFLOW Modeling-Based Groundwater Adaptation Policy Guidelines for Lahore, Pakistan under Projected Climate Change, and Human Development Scenarios. Atmosphere, 13,

[3] Locatelli, L., Mark, O., Mikkelsen, P.S., Arnbjerg-Nielsen, K., Deletic, A., Roldin, M., Binning, P.J. (2017), Hydrologic Impact of Urbanization with Extensive Stormwater Infiltration. J. Hydrol. 544, 524–537.

[4] Barron, O.V., Donn, M.J., Barr, A.D., (2013). Urbanisation and Shallow Groundwater: Predicting Changes in Catchment Hydrological Responses. Water Resour. Manag., 27, 95–115.

[5] Fleckenstein, J.H., Krause, S., Hannah, D.M., Boano, F., (2010). Groundwater-SurfaceWater Interactions: New Methods and Models to Improve Understanding of Processes and Dynamics. Adv. Water Resour., 33, 1291–1295.

[6] Sophocleous, M., (2002). Interactions between Groundwater and Surface Water: The State of Science. Hydrogeol. J., 10, 52–67.

[7] Sharp, J.M., (2010). The Impacts of Urbanization on Groundwater Systems and Recharge. Aquamundi, 1, 51–56.

[8] Wang, Y., Zheng, C., Ma, R., (2018). Review: Safe and Sustainable Groundwater Supply in China. Hydrogeol. J., 26, 1301–1324.

[9] Yifru, B.A., Chung, I.M., Kim, M.G., Chang, S.W., (2021). Assessing the Effect of Land/Use Land Cover and Climate Change on Water Yield and Groundwater Recharge in East African Rift Valley Using Integrated Model. J. Hydrol. Reg. Stud., 37, 100926.

[10] Lee, C.H., Yeh, H.F., Chen, J.F., (2008). Estimation of Groundwater Recharge Using the Soil Moisture Budget Method and the Base-Flow Model. Environ. Geol., 54, 1787–1797.

[11] Scanlon, B.R., Healy, R.W., Cook, P.G., (2002). Choosing Appropriate Techniques for Quantifying Groundwater Recharge. Hydrogeol. J., 10, 18−39.

[12] Healy, R., Cook, P.G., (2002). Using Groundwater Levels to Estimate Recharge. Springer, 10, 91–109.

[13] Chand, R., Chandra, S., Rao, V.A., Singh, V.S., Jain, S.C., (2004). Estimation of Natural Recharge and Its Dependency on Sub-Surface Geoelectric Parameters. J. Hydrol., 299, 67–83.

[14] Rangarajan, R., Muralidharan, D., Deshmukh, S.D., Hodlur, G.K., Gangadhara Rao, T., (2005). Redemarcation of Recharge Area of Stressed Confined Aquifers of Neyveli Groundwater Basin, India, through Tritium Tracer Studies. Environ. Geol., 48, 37–48.

[15] Shahul Hameed, A., Resmi, T.R., Suraj, S., Warrier, C.U., Sudheesh, M., Deshpande, R.D., (2015). Isotopic Characterization and Mass Balance Reveals Groundwater Recharge Pattern in Chaliyar River Basin, Kerala, India. J. Hydrol. Reg. Stud., 4, 48–58.

[16] Aslam, R.A., Shrestha, S., Usman, M.N., Khan, S.N., Ali, S., Sharif, M.S., Sarwar, M.W., Saddique, N., Sarwar, A., Ali, M.U., et al., (2022). Integrated SWAT-MODFLOW Modeling-Based Groundwater Adaptation Policy Guidelines for Lahore, Pakistan under Projected Climate Change, and Human Development Scenarios. Atmosphere, 13, 2001.

[17] Cheema, M.J.M., Immerzeel, W.W., Bastiaanssen, W.G.M., (2014). Spatial Quantification of Groundwater Abstraction in the Irrigated Indus Basin. Groundwater, 52, 25–36.

[18] Taie Semiromi, M., Koch, M., (2019). Analysis of Spatio-Temporal Variability of Surface–Groundwater Interactions in the Gharehsoo River Basin, Iran, Using a Coupled SWAT-MODFLOW Model. Environ. Earth Sci., 78, 201.

[19] Dowlatabadi, S., Ali Zomorodian, S.M., (2015). Conjunctive Simulation of Surface Water and Groundwater Using SWAT and MODFLOW in FiroozabadWatershed. KSCE J. Civ. Eng., 20, 485–496.

[20] Sophocleous, M.A., Koelliker, J.K., Govindaraju, R.S., Birdie, T., Ramireddygari, S.R., Perkins, S.P., (1999) Integrated Numerical Modeling for Basin-Wide Water Management: The Case of the Rattlesnake Creek Basin in South-Central Kansas. J. Hydrol., 214, 179–196.

[21] Gao, F., Feng, G., Han, M., Dash, P., Jenkins, J., Liu, C., (2019) Assessment of Surface Water Resources in the Big Sunflower River Watershed Using Coupled SWAT–MODFLOW Model. Water, 11, 528.

[22] Bailey, R.T., Wible, T.C., Arabi, M., Records, R.M., Ditty, J., (2016). Assessing Regional-Scale Spatio-Temporal Patterns of Groundwater–Surface Water Interactions Using a Coupled SWAT-MODFLOW Model. Hydrol. Process., 30, 4420−4433.

[23] Techniques, M., (2005). MODFLOW-NWT, a Newton Formulation for MODFLOW-2005. US Geol. Surv. Tech. Methods, 6, 44.

[24] Wang, Y., Chen, N., (2021). Recent Progress in Coupled Surface–Ground Water Models and Their Potential in Watershed Hydro-Biogeochemical Studies: A Review. Watershed Ecol. Environ., 3, 17−29.

[25] Yifru, B.A., Chung, I.M., Kim, M.G., Chang, S.W., (2020). Assessment of Groundwater Recharge in Agro-Urban Watersheds Using Integrated SWAT-MODFLOW Model. Sustainability, 12, 6593.

[26] Ntona, M.M., Busico, G., Mastrocicco, M., Kazakis, N., (2022). Modeling Groundwater and SurfaceWater Interaction: An Overview of Current Status and Future Challenges. Sci. Total Environ., 846, 157355.

[27] Mosase, E., Ahiablame, L., Park, S., Bailey, R., (2019). Modeling Potential Groundwater Recharge in the Limpopo River Basin with SWAT-MODFLOW. Ground. Sustain. Dev., 9, 100260.

[28] Sophocleous, M., Perkins, S.P., (2000). Methodology and Application of Combined Watershed and Ground-Water Models in Kansas. J. Hydrol., 236, 185–201.

[29] Chunn, D., Faramarzi, M., Smerdon, B., Alessi, D., (2019). Application of an Integrated SWAT–MODFLOW Model to Evaluate Potential Impacts of Climate Change and Water Withdrawals on Groundwater–Surface Water Interactions in West-Central Alberta. Water, 11, 110.

[30] Pisinaras, V., (2016). Assessment of Future Climate Change Impacts in a Mediterranean Aquifer. Glob. NEST J., 18, 119–130.

[31] Liu, W., Park, S., Bailey, R.T., Molina-Navarro, E., Andersen, H.E., Thodsen, H., Nielsen, A., Jeppesen, E., Jensen, J.S., Jensen, J.B., et al., (2020). Quantifying the Streamflow Response to Groundwater Abstractions for Irrigation or Drinking Water at Catchment Scale Using SWAT and SWAT–MODFLOW. Environ. Sci. Eur., 32, 113.

[32] Zambrano-Bigiarini, M., Rojas, R., (2013). A Model-Independent Particle Swarm Optimisation Software for Model Calibration. Environ. Model. Softw., 43, 5−25.

[33] Yuan, L., Sinshaw, T., Forshay, K.J., (2020). Review of Watershed-Scale Water Quality and Nonpoint Source Pollution Models. Geosciences, 10, 25.

[34] Guevara-Ochoa, C., Medina-Sierra, A., Vives, L., (2020). Spatio-Temporal Effect of Climate Change on Water Balance and Interactions between Groundwater and Surface Water in Plains. Sci. Total Environ., 722, 137886.

[35] Healy, R., Cook, P.G., (2002). Using Groundwater Levels to Estimate Recharge. Springer, 10, 91–109.

[36] Hung Vu, V., Merkel, B.J., (2019). Estimating Groundwater Recharge for Hanoi, Vietnam. Sci. Total Environ., 651, 1047–1057.

[37] Sim¸sek, C., Demirkesen, A.C., Baba, A., Kumanlıo˘ glu, A., Durukan, S., Aksoy, N., Demirkıran, Z., Hasözbek, A., Murathan, A., Tayfur, G., (2020). Estimation Groundwater Total Recharge and Discharge Using GIS-Integrated Water Level Fluctuation Method: A Case Study from the Ala¸sehir Alluvial AquiferWestern Anatolia, Turkey. Arab. J. Geosci., 13, 143.

[38] Delottier, H., Pryet, A., Lemieux, J.M., Dupuy, A., (2018). Estimating Groundwater Recharge Uncertainty from Joint Application of an Aquifer Test and the Water-Table Fluctuation Method. Hydrogeol. J., 26, 2495−2505.

[39] Park, S., (2018). Enhancement of Coupled Surface/Subsurface Flow Models in Watersheds: Analysis, Model Development, Optimization, and User Accessibility by Using SWAT-MODFLOW Simulation. Available online:https://mountainscholar.org/bitstream/ handle/10217/193164/Park_colostate_0053A_15199.pdf?sequence=1 (accessed on 11 September 2024).

[40] Chung, I.M., Kim, Y.J., Kim, N.W., (2021). Estimating the Temporal Distribution of Groundwater Recharge by Using the Transient Water Table Fluctuation Method and Watershed Hydrologic Model. Appl. Eng. Agric., 37, 95−104.

[41] Jie, Z., van Heyden, J., Bendel, D., Barthel, R., (2011). Combination of Soil-Water Balance Models and Water-Table Fluctuation Methods for Evaluation and Improvement of Groundwater Recharge Calculations. Hydrogeol. J., 19, 1487−1502.

[42] Mohammed, R., and Scholz, M., (2019). Climate change and water resources in arid regions: uncertainty of the baseline period. Theor. Appl. Climatol., 137(1), 1365−1376.‏ https://doi.org/10.1007/s00704-018-2671-6

[43] Mohammed, R., Scholz, M., (2017). Impact of Evapotranspiration Formulations at Various Elevations on the Reconnaissance Drought Index. Water Resour. Manage., 31, 531-548.

[44] Park, E., (2012). Delineation of Recharge Rate from a HybridWater Table Fluctuation Method. Water Resour. Res., 48.

[45] Faramarzi, M., Srinivasan, R., Iravani, M., Bladon, K.D., Abbaspour, K.C., Zehnder, A.J.B., Goss, G.G., (2015). Setting up a Hydrological Model of Alberta: Data Discrimination Analyses Before Calibration. Environ. Model. Softw., 74, 48–65.

[46] Abbaspour, K.C., (2010). SWAT-CUP SWAT Calibration and Uncertainty Programs. Arch. Orthop. Trauma Surg., 130, 965–970.

[47] Blöschl, G., Sivapalan, M., (1995). Scale Issues in Hydrological Modelling: A Review. Hydrol. Process., 9, 251–290.

[48] Jafari, T., Kiem, A.S., Javadi, S., Nakamura, T., Nishida, K., (2021). Fully Integrated Numerical Simulation of Surface Water-Groundwater Interactions Using SWAT-MODFLOW with an Improved Calibration Tool. J. Hydrol. Reg. Stud., 35, 100822.

[49] Abbaspour, K.C., Rouholahnejad, E. Vaghefi, S., Srinivasan, R., Yang, H., Kløve, B.A., (2015) Continental-Scale Hydrology and Water Quality Model for Europe: Calibration and Uncertainty of a High-Resolution Large-Scale SWAT Model. J. Hydrol., 524, 733–752.

[50] Ali, I. M., Naje, Ahmed Samir, Nasr, M. S., (2020). Eco-friendly chopped tire rubber as reinforcements in fly ash based geopolymer concrete. Global Nest Journal, 22(3), 342 – 347.

[51] Mohammed, Ibrahim, Hashim Al-Khalaf, Safaa K., Alwan, Husam H., Naje, Ahmed Samir, (2022). Environmental assessment of Karbala water treatment plant using water quality index (WQI). Materials Today: Proceedings, 60,1554 – 1560.

[52] Hassan, Ali A., Hadi, Raid T., Rashid, Adil H., Naje, Ahmed Samir, 2020. Chemical modification of castor oil as adsorbent material for oil content removal from oilfield produced water. Pollution Research, 39 (4),892 – 900.

Downloads

Published

2025-04-24

How to Cite

Rahem, M. J., & Ruqayah Mohammed. (2025). SWAT-MODFLOW Model for Groundwater Recharge Variation Assessment: Lower Zab River Basin, Northeastern Iraq. International Journal of Computational and Experimental Science and Engineering, 11(2). https://doi.org/10.22399/ijcesen.1674

Issue

Section

Research Article