High-Density Lead Germanate Glasses with Enhanced Gamma and Neutron Shielding Performance: Impact of PbO Concentration on Attenuation Properties
DOI:
https://doi.org/10.22399/ijcesen.635Keywords:
Lead germanate glass, Radiation shielding, Gamma-ray attenuation, Neutron attenuation, Lead oxide (PbO) concentrationAbstract
Lead germanate glasses, improved with lead oxide (PbO), have emerged as effective materials for radiation shielding due to their increased density and structural robustness. The goal of this study is to find out how well lead germanate glasses with PbO concentrations between 20 and 55 mol% can block gamma rays and neutrons. The Phy-X/PSD software was used to obtain important numbers like the mass attenuation coefficient (MAC), the linear attenuation coefficient (LAC), the half-value layer (HVL), the mean free path (MFP), and the fast neutron removal cross section (FNRCS). The results show that the 55PbGe sample, which has the most PbO, has better gamma-ray attenuation and a low energy absorption buildup factor (EABF). This makes it a good choice option for locations requiring compact but efficient radiation shielding. The 50PbGe sample, on the other hand, demonstrates effective neutron shielding capabilities, suggesting it may be suitable for applications requiring protection against both gamma and neutron exposure. Higher PbO content is linked to better radiation blocking, which supports the idea that lead germanate glasses could be used instead of traditional lead-based shielding materials.
References
Rada, S., Rada, M., & Culea, E. (2010). Structural and optical properties of the gadolinium–lead–germanate glasses. Journal of Non-Crystalline Solids, 357(1), 62–66. https://doi.org/10.1016/j.jnoncrysol.2010.10.013.
Ribeiro, S., Dexpert-Ghys, J., Piriou, B., & Mastelaro, V. (1993). Structural studies in lead germanate glasses: EXAFS and vibrational spectroscopy. Journal of Non-Crystalline Solids, 159(3), 213–221. https://doi.org/10.1016/0022-3093(93)90225-m.
Wachtler, M., Speghini, A., Gatterer, K., Fritzer, H. P., Ajò, D., & Bettinelli, M. (1998). Optical Properties of Rare‐Earth Ions in Lead Germanate Glasses. Journal of the American Ceramic Society, 81(8), 2045–2052. https://doi.org/10.1111/j.1151-2916.1998.tb02586.x.
Sharma, S., Khanna, A., & Fábián, M. (2024). Structural, physical and thermal properties of lead germanate glasses. Journal of Non-Crystalline Solids, 638, 123068. https://doi.org/10.1016/j.jnoncrysol.2024.123068.
Katubi, K. M., Alsulami, R. A., Albarqi, M. M., Alrowaili, Z., Kebaili, I., Singh, V., & Al-Buriahi. (2023). Radiation Shielding efficiency of lead-tungsten-boron glasses with Sb, Al, and Bi against gamma, neutron and charge particles. Applied Radiation and Isotopes, 204, 111139. https://doi.org/10.1016/j.apradiso.2023.111139.
H.O. Tekin, L.R.P. Kassab, Ozge Kilicoglu, Evellyn Santos Magalhães, Shams A.M. Issa, Guilherme Rodrigues da Silva Mattos, (2019). Newly developed tellurium oxide glasses for nuclear shielding applications: An extended investigation, Journal of Non-Crystalline Solids, 528;119763, https://doi.org/10.1016/j.jnoncrysol.2019.119763.
Shams A.M. Issa, H.O. Tekin, (2019). The multiple characterization of gamma, neutron and proton shielding performances of xPbO-(99-x)B2O3–Sm2O3 glass system, Ceramics International, 45(17);23561-23571, https://doi.org/10.1016/j.ceramint.2019.08.065.
Katubi, K. M., Alsulami, R. A., Albarqi, M. M., Alrowaili, Z., Kebaili, I., Singh, V., & Al-Buriahi. (2023). Radiation Shielding efficiency of lead-tungsten-boron glasses with Sb, Al, and Bi against gamma, neutron and charge particles. Applied Radiation and Isotopes, 204;111139. https://doi.org/10.1016/j.apradiso.2023.111139
Alfryyan, N., Alrowaili, Z. A., Somaily, H. H., Olarinoye, I. O., Alwadai, N., Mutuwong, C., & Al-Buriahi, M. S. (2022). Comparison of radiation shielding and elastic properties of germinate tellurite glasses with the addition of Ga2O3. Journal of Taibah University for Science, 16(1), 183–192. https://doi.org/10.1080/16583655.2022.2038468.
Sayyed, M. I., Kaky, K. M., & Anaee, R. A. (2024). Chromium ions effects on Sb2O3-PbO-GeO2 glass properties for radiation protection. Journal of Theoretical and Applied Physics, 18(1). https://doi.org/10.57647/j.jtap.2024.1801.13.
Higgins, G. M., & Sheard, C. (1927). Germination and growth of seeds as dependent upon selective irradiation. Plant physiology, 2(3), 325–335. https://doi.org/10.1104/pp.2.3.325.
Rada, S., & Culea, E. (2010). Novel photosensitive properties of gadolinium–lead germanate glasses. Molecular Physics, 108(14), 1877–1886. https://doi.org/10.1080/00268976.2010.494627.
Wachtler, M., Speghini, A., Gatterer, K., Fritzer, H. P., Ajò, D., & Bettinelli, M. (1998). Optical Properties of Rare‐Earth Ions in Lead Germanate Glasses. Journal of the American Ceramic Society, 81(8), 2045–2052. https://doi.org/10.1111/j.1151-2916.1998.tb02586.x.
Ribeiro, S., Dexpert-Ghys, J., Piriou, B., & Mastelaro, V. (1993). Structural studies in lead germanate glasses: EXAFS and vibrational spectroscopy. Journal of Non-Crystalline Solids, 159(3), 213–221. https://doi.org/10.1016/0022-3093(93)90225-m.
Sun, J., & Luo, L. (2014). A Study on Distribution and Chemical Speciation of Lead in Corn Seed Germination by Synchrotron Radiation X-ray Fluorescence and Absorption Near Edge Structure Spectrometry. Chinese journal of analytical chemistry, 42(10), 1447–1452. https://doi.org/10.1016/s1872-2040(14)60774-x.
Kaky, K. M., Sayyed, M., Mahmoud, K., Mhareb, M., Biradar, S., & Kadhim, A. J. (2024). A comprehensive investigation on lanthanum ions doped borate-tellurite-germinate glass for radiation shielding and optical application. Progress in Nuclear Energy, 176, 105402. https://doi.org/10.1016/j.pnucene.2024.105402.
Maeder, M., Rocca, H. P. B., Wolber, T., Ammann, P., Roelli, H., Rohner, F., & Rickli, H. (2005). Impact of a lead glass screen on scatter radiation to eyes and hands in interventional cardiologists. Catheterization and Cardiovascular Interventions, 67(1), 18–23. https://doi.org/10.1002/ccd.20457.
M.S.Al-Buriahi, Halil Arslan, H.O. Tekin, V.P. Singh and Baris T. Tonguc, (2020). MoO3-TeO2 glass system for gamma ray shielding applications, Materials Research Express, https://doi.org/10.1088/2053-1591/ab6db4.
Gokhan Kilic, Erkan Ilik, Shams A.M. Issa, Bashar Issa, M.S. Al-Buriahi, U. Gokhan Issever, Hesham M.H. Zakaly, H.O. Tekin, (2021). Ytterbium (III) oxide reinforced novel TeO2–B2O3–V2O5 glass system: Synthesis and optical, structural, physical and thermal properties, Ceramics International, 47(13);18517-18531, https://doi.org/10.1016/j.ceramint.2021.03.175.
E. Kavaz, H.O. Tekin, G. Kilic, G. Susoy, (2020) Newly developed Zinc-Tellurite glass system: An experimental investigation on impact of Ta2O5 on nuclear radiation shielding ability, Journal of Non-Crystalline Solids, 544;120169, https://doi.org/10.1016/j.jnoncrysol.2020.120169.
Gokhan Kilic, Shams.A.M. Issa, Erkan Ilik, O. Kilicoglu, H.O. Tekin, (2020). A journey for exploration of Eu2O3 reinforcement effect on zinc-borate glasses: Synthesis, optical, physical and nuclear radiation shielding properties, Ceramics International, 47(2);2572-2583, https://doi.org/10.1016/j.ceramint.2020.09.103.
A.S. Abouhaswa, Hesham M.H. Zakaly, Shams A.M. Issa, M. Rashad, Maria Pyshkina, H.O. Tekin, R.El-Mallawany, Mostafa Y.A. Mostafa, (2021). Synthesis, physical, optical, mechanical, and radiation attenuation properties of TiO2–Na2O–Bi2O3–B2O3 glasses, Ceramics International, 47; https://doi.org/10.1016/j.ceramint.2020.08.122.
Al-Buriahi, M.S., Tekin, H.O., Kavaz, E. et al. (2019). New transparent rare earth glasses for radiation protection applications. Appl. Phys. A 125, 866 https://doi.org/10.1007/s00339-019-3077-8.
Ozge Kilicoglu, H.O. Tekin, (2020). Bioactive glasses and direct effect of increased K2O additive for nuclear shielding performance: A comparative investigation, Ceramics International, 1323-1333, https://doi.org/10.1016/j.ceramint.2019.09.095.
Kurtulus, R., Kavas, T., Akkurt, I. et al. (2021). A comprehensive study on novel alumino-borosilicate glass reinforced with Bi2O3 for radiation shielding applications: synthesis, spectrometer, XCOM, and MCNP-X works. J Mater Sci: Mater Electron 32, https://doi.org/10.1007/s10854-021-05964-w
H.O. Tekin, L.R.P. Kassab, Shams A.M. Issa, C.D.S. Bordon, E.E. Altunsoy Guclu, G.R. da Silva Mattos, Ozge Kilicoglu, (2019) Synthesis and nuclear radiation shielding characterization of newly developed germanium oxide and bismuth oxide glasses, Ceramics International, 45(18);24664-24674, https://doi.org/10.1016/j.ceramint.2019.08.204.
Y.S. Rammah, H.O. Tekin, C. Sriwunkum, I. Olarinoye, Amani Alalawi, M.S. Al-Buriahi, T. Nutaro, Baris T. Tonguc,(2021) Investigations on borate glasses within SBC-Bx system for gamma-ray shielding applications, Nuclear Engineering and Technology, 53(1),282-293, https://doi.org/10.1016/j.net.2020.06.034.
Tekin, H.O., Manici, T. (2017). Simulations of mass attenuation coefficients for shielding materials using the MCNP-X code. Nucl sci tech 28, 95. https://doi.org/10.1007/s41365-017-0253-4.
E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, (2020). Phy-X / PSD:Development of a user-friendly online software for calculation of parameters relevant to radiation shielding and dosimetry, Radiat. Phys. Chem., 166;108496, https://doi.org/10.1016/j.radphyschem.2019.108496
Cena, B. (2024). Determination of the type of radioactive nuclei and gamma spectrometry analysis for radioactive sources. International Journal of Computational and Experimental Science and Engineering, 10(2);241-246. https://doi.org/10.22399/ijcesen.321
CENA, B., & HASI, N. (2024). Handling of radioactive waste from the use of radionuclides in hospitals. International Journal of Computational and Experimental Science and Engineering, 10(2);207-214. https://doi.org/10.22399/ijcesen.331
KUTU, N. (2024). Gamma ray Shielding Properties of the 57.6TeO2-38.4ZnO-4NiO system. International Journal of Computational and Experimental Science and Engineering, 10(2);141-145. https://doi.org/10.22399/ijcesen.310
Şen BAYKAL, D. (2024). A novel approach for Technetium-99m radioisotope transportation and storage in lead-free glass containers: A comprehensive assessment through Monte Carlo simulation technique. International Journal of Computational and Experimental Science and Engineering, 10(2);102-111. https://doi.org/10.22399/ijcesen.304
Cena, B., Qafmolla, L., & Hasi, N. (2024). Handling, Conditioning of Low Level Radioactive Wastes (LLRW), Spent Radiation Sources (SRS), their transport to Temporary Storage Facility in Kosovo and Albania. International Journal of Computational and Experimental Science and Engineering, 10(2);228-235. https://doi.org/10.22399/ijcesen.323
KUTU, N. (2024). Neutron Shielding Properties of Cellulose Acetate CdO-ZnO Polymer Composites. International Journal of Computational and Experimental Science and Engineering, 10(2);203-206. https://doi.org/10.22399/ijcesen.322
Hessa ALKARRANI, Şen Baykal, D., Ghada ALMISNED, & H.O. TEKIN. (2024). Exploring the Radiation Shielding Efficiency of High-Density Aluminosilicate Glasses and Low-Calcium SCMs. International Journal of Computational and Experimental Science and Engineering, 10(4);614-620. https://doi.org/10.22399/ijcesen.441
Avcı, H., Bulcar, K., Oğlakçı, M., & Atav, Ülfet. (2024). Dose Rate Calibration of β Radiation Source in Risø TL/OSL-DA-20 Reader Device. International Journal of Computational and Experimental Science and Engineering, 10(1);91-94. https://doi.org/10.22399/ijcesen.299
Şen BAYKAL, D., Ghada ALMISNED, Hessa ALKARRANI, & H.O. TEKIN. (2024). Radiation Shielding Characteristics and Transmission Factor values of some Selected Alloys: A Monte Carlo-Based Study. International Journal of Computational and Experimental Science and Engineering, 10(4);549-559. https://doi.org/10.22399/ijcesen.421
Karpuz, N. (2024). Effective Atomic Numbers of Glass Samples. International Journal of Computational and Experimental Science and Engineering, 10(2);236-240. https://doi.org/10.22399/ijcesen.340
SARIHAN, M., & SOYAL, H. (2024). Assessment of Radiation Protection Knowledge and Practical Skills Among Health Services Vocational School Students Using Dosimeters. International Journal of Computational and Experimental Science and Engineering, 10(4);682-688. https://doi.org/10.22399/ijcesen.442
SOYAL, H., ORTABAĞ, T., & HASDE, M. (2024). Ionizing Radiation Safety Perception of Hospital Radiation Exposed Workers. International Journal of Computational and Experimental Science and Engineering, 10(4);1111-1119. https://doi.org/10.22399/ijcesen.452
YAZICI, S. D., GÜNAY, O., TUNÇMAN, D., KESMEZACAR, F. F., YEYİN, N., AKSOY, S. H., … ÇAVDAR KARAÇAM, S. (2024). Evaluating Radiation Exposure to Oral Tissues in C-Arm Fluoroscopy A Dose Analysis. International Journal of Computational and Experimental Science and Engineering, 10(2);181-188. https://doi.org/10.22399/ijcesen.313
Şen Baykal, D., ALMISNED , G., ALKARRANI , H., & TEKIN, H. O. (2024). Exploring gamma-ray and neutron attenuation properties of some high-density alloy samples through MCNP Monte Carlo code. International Journal of Computational and Experimental Science and Engineering, 10(3);470-479. https://doi.org/10.22399/ijcesen.422
KAYAHAN, S. H., KUTU, N., & GUNAY, O. (2024). Radiation Dose Levels in Submandibular and Sublingual Gland Regions during C-Arm Scopy. International Journal of Computational and Experimental Science and Engineering, 10(2);168-173. https://doi.org/10.22399/ijcesen.320
Sengul, A., Gunay, O., Kekeç, E., Zengin, T., Tuncman, D., Kesmezacar, F. F., … Aksoy, H. (2024). Determining the Radiation Dose Levels the Kidney is Exposed to in Kidney Stone Fragmentation Procedures. International Journal of Computational and Experimental Science and Engineering, 10(1);79-84. https://doi.org/10.22399/ijcesen.298
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Computational and Experimental Science and Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.