A novel approach for Technetium-99m radioisotope transportation and storage in lead-free glass containers: A comprehensive assessment through Monte Carlo simulation technique

Authors

  • Duygu Şen BAYKAL Istanbul Nisantasi University

DOI:

https://doi.org/10.22399/ijcesen.304

Keywords:

Lead-free Glass, Radioisotope Containers, Shielding Parameters, MCNPX, Phy-X/PSD

Abstract

The primary aim of this project is to develop glass containers that are free from lead for the transportation of Tc-99m. The analysis included glass container structures characterized by the chemical formula 60B2O3-(25-x)GeO2-15BaO-xWO3 (where x ranges from 0 to 25). The rates of addition, in theory, range from 3.397 to 4.124 g/cm3. To evaluate the radiation shielding abilities of glass containers, the Phy-X/PSD software was used. The energy values employed in the evaluation varied from 0.015 MeV to 0.15 MeV, a range frequently employed in the field of medical physics. The transmission factors for the specific gamma energy of Tc-99m were determined using the Monte Carlo method MCNPX (version 2.7.0). The method simulates the motion and interaction of particles. The G6 glass container type exhibited the highest level of gamma-ray attenuation among all the investigated glass containers, primarily due to its superior shielding properties. The creation of glass containers that do not contain lead and are designed to contain the movement of Tc-99m has significant implications in the areas of radiopharmaceuticals and medical diagnostics. In light of the continuous attempts of the scientific community, it is advisable to undertake more investigations aimed at enhancing the technology of lead-free glass.

References

Singh J, Singh H, Sharma J, Singh T, Singh PS. (2018). Fusible alloys: a potential candidate for gamma rays shield design. Prog. Nucl. Energy, 106,387-395 https://doi.org/10.1016/j.pnucene.2018.04.002. DOI: https://doi.org/10.1016/j.pnucene.2018.04.002

Erdemir, Rabiye Uslu, Kilic, Gokhan, Sen Baykal, Duygu, ALMisned, Ghada, Issa, Shams A. M., Zakaly, Hesham M. H., Ene, Antoaneta and Tekin, Huseyin Ozan. (2022). Diagnostic and therapeutic radioisotopes in nuclear medicine: Determination of gamma-ray transmission factors and safety competencies of high-dense and transparent glassy shields. Open Chemistry, 20,517-524. https://doi.org/10.1515/chem-2022-0167. DOI: https://doi.org/10.1515/chem-2022-0167

Dudley T. Goodhead, (2009). Understanding and characterisation of the risks to human health from exposure to low levels of radiation, Radiation Protection Dosimetry, 137(1-2);109–117, https://doi.org/10.1093/rpd/ncp191. DOI: https://doi.org/10.1093/rpd/ncp191

Mazzi, U., Schibli, R., Pietzsch, H.J., Künstler, J.U., Spies, H. (2007). Technetium in Medicine. In: Zolle, I. (eds) Technetium-99m Pharmaceuticals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33990-8_2. DOI: https://doi.org/10.1007/978-3-540-33990-8_2

William C. Eckelman, (2009). Unparalleled Contribution of Technetium-99m to Medicine Over 5 Decades, JACC: Cardiovascular Imaging, 2(3); 364-368, https://doi.org/10.1016/j.jcmg.2008.12.013. DOI: https://doi.org/10.1016/j.jcmg.2008.12.013

N. Singh, K.J. Singh, K. Singh, H. Singh (2004). Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials Nucl. Instrum. Methods Phys. Res. B, 225;305-309, https://doi.org/10.1016/j.nimb.2004.05.016. DOI: https://doi.org/10.1016/j.nimb.2004.05.016

Duygu Sen Baykal, G. Kilic, Erkan Ilik, E. Kavaz, Ghada ALMisned, R.B. Cakirli, H.O. Tekin, (2023). Designing a Lead-free and high-density glass for radiation facilities: Synthesis, physical, optical, structural, and experimental gamma-ray transmission properties of newly designed barium-borosilicate glass sample, Journal of Alloys and Compounds, 965,171392, https://doi.org/10.1016/j.jallcom.2023.171392. DOI: https://doi.org/10.1016/j.jallcom.2023.171392

Ab.Latif Wani, Anjum Ara, Jawed Ahmad Usmani (2015). Lead toxicity: a review Interdisc. Toxicol. https://doi.org/10.1515/intox-2015-0009. DOI: https://doi.org/10.1515/intox-2015-0009

Monisha Jaıshankar, Tenzin Tseten, Naresh Anbalagan, BlessyB. Mathew, KrishnamurthyN. Beeregowda Toxicity, mechanism and health effects of some heavy metals Inter.Toxicol. 7(2), https://doi.org/10.2478/intox-2014-0009. DOI: https://doi.org/10.2478/intox-2014-0009

Muhammad Shahid, Sana Khalid, Ghulam Abbas, Naeem Shahid, Muhammad Nadeem, Muhammad Sabir, Muhammad Aslam & Camille Dumat (2015). Heavy metal stress and crop productivity K. Hakeem (Ed.), Crop Production and Global EnvironmentalIssues, Springer, Cham, https://doi.org/10.1007/978-3-319-23162-4_1. DOI: https://doi.org/10.1007/978-3-319-23162-4_1

Muhammad Shahid, Camille Dumat, Bertrand Pourrut, Muhammad Sabir, Eric Pinelli (2014). Assessing the effect of metal speciation on lead toxicity to Vicia faba pigment contents,J.Geochem.Explor. https://doi.org/10.1016/j.gexplo.2014.01.003. DOI: https://doi.org/10.1016/j.gexplo.2014.01.003

D. A. Gidlow, (2004). In-depth review, Lead Toxicity, Occupational Medicine 54:76–81 https://doi.org/10.1093/occmed/kqh0192003. DOI: https://doi.org/10.1093/occmed/kqh019

Nadin Jamal Abu Al Roos, Noorfatin AidaBaharul Amin, Rafidah Zainon. (2019). Conventional and New Lead-free Radiation Shielding Materials for Radiation Protection in Nuclear Medicine: a review, Radiation Physics and Chemistry 165; 108439 https://doi.org/10.1016/j.radphyschem.2019.108439 DOI: https://doi.org/10.1016/j.radphyschem.2019.108439

Laal Marjan. (2013). Innovation process in medical imaging, Procedia-Social and Behavioural Sciences,81;60-64 https://doi.org/10.1016/j.sbspro.2013.06.388. DOI: https://doi.org/10.1016/j.sbspro.2013.06.388

Smith-Bindman R., Lipson J., Marcus R., et al. (2009). Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer, Archives of internal medicine, 169(22);2078–2086. https://doi.org/10.1001/archinternmed.2009.427. DOI: https://doi.org/10.1001/archinternmed.2009.427

E. Browne, J.K. Tuli (2011). Nuclear data sheets for A=99 Nucl.Data Sheets,

https://doi.org/10.1016/j.nds.2011.01.001. DOI: https://doi.org/10.1016/j.nds.2011.01.001

AlMisned G, Sen Baykal D, Ilik E, Abuzaid M, Issa SAM, Kilic G, Zakaly HMH, Ene A, Tekin HO. (2023). Tungsten (VI) oxide reinforced antimony glasses for radiation safety applications: A throughout investigation for determination of radiation shielding properties and transmission factors. Heliyon. 30;9(7):e17838. https://doi.org/10.1016/j.heliyon.2023.e17838. DOI: https://doi.org/10.1016/j.heliyon.2023.e17838

Abouhaswa A.S., Zakaly H.M.H., Issa S.A.M., Rashad M., Pyshkina M., Tekin H.O., ElMallawany R., Mostafa M.Y.A. (2021). Synthesis, physical, optical, mechanical, and radiation attenuation properties of TiO2–Na2O–Bi2O3–B2O3 glasses. Ceram.Int., 47(1);185-204 https://doi.org/10.1016/j.ceramint.2020.08.122. DOI: https://doi.org/10.1016/j.ceramint.2020.08.122

M.S. Al-Buriahi, C. Sriwunkum, H. Arslan, et al. (2020). Investigation of barium borate glasses for radiation shielding applications Appl. Phys. A, 126, 68, https://doi.org/10.1007/s00339-019-3254-9. DOI: https://doi.org/10.1007/s00339-019-3254-9

U. Kara, E. Kavaz, ShamsA.M.Issa, M. Rashad, G. Susoy, A.M.A. Mostafa, N. Yildiz Yorgun, H.O. Tekin. (2020). Optical, structural and nuclear radiation shielding properties of Li2B4O7 glasses: efect of boron mineral additive. Applied Physics A, 126; 261, https://doi.org/10.1007/s00339-020-3397-8. DOI: https://doi.org/10.1007/s00339-020-3446-3

H.O. Tekin, V.P. Singh, T. Manici. (2017). Effects of micro-sized and nano-sized WO3 on mass attenauation coefficients of concrete by using MCNPX code Appl. Radiat. Isot., 121;122-125. https://doi.org/10.1016/j.apradiso.2016.12.040. DOI: https://doi.org/10.1016/j.apradiso.2016.12.040

M.M. Hosamani, N.M. Badiger (2018). Determination of effective atomic number of composite materials using backscattered gamma photons a novel method Chem Phys. Lett, 695;94-98. https://doi.org/10.1016/j.cplett.2018.02.012. DOI: https://doi.org/10.1016/j.cplett.2018.02.012

Erdem Şakar, Özgür Fırat Özpolat, Bünyamin Alım, M.I. Sayyed, Murat Kurudirek, (2020). Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry, Radiation Physics and Chemistry, 166;108496, , https://doi.org/10.1016/j.radphyschem.2019.108496 DOI: https://doi.org/10.1016/j.radphyschem.2019.108496

H.O. Tekin, Ghada ALMisned, ShamsA.M. Issa, Hesham M.H. Zakaly (2022). A rapid and direct method for half value layer calculations for nuclear safety studies using MCNPX Monte Carlo code Nucl. Eng.,Technol., 54(9);3317-3323, https://doi.org/10.1016/j.net.2022.03.037. DOI: https://doi.org/10.1016/j.net.2022.03.037

Ghada ALMisned, Kadir Günoğlu, Hatice Varol Özkavak, Duygu Sen Baykal, H.O. Tekin, Nurdan Karpuz, Iskender Akkurt, (2023). An investigation on gamma-ray and neutron attenuation properties of multi layered Al/B4C composite, Materials Today Communications, 36;106813 , https://doi.org/10.1016/j.mtcomm.2023.106813. DOI: https://doi.org/10.1016/j.mtcomm.2023.106813

J. Briesmeister, MCNP—a General Monte Carlo Code for Neutron and Photon Transport, National Laboratory, Los Alamos, 2000 Report LA13709-M, version 4C.

Hançerlıoğlu, a. (2006). Monte carlo sımulatıon method and mcnp code system. Kastamonu education journal, 14(2), 545-556.

R. Boodaghi Malidarre, I. Akkurt (2021). Monte Carlo simulation study on TeO2–Bi2O–PbO–MgO–B2O3 glass for neutron-gamma 252Cf source J. Mater. Sci: Mater. Electron, 32;11666–11682 https://doi.org/10.1007/s10854-021-05776-y. DOI: https://doi.org/10.1007/s10854-021-05776-y

Ghada ALMisned, Hesham M.H. Zakaly, Fatema T. Ali, Shams A.M. Issa, Antoaneta Ene, Gokhan Kilic, V. Ivanov, H.O. Tekin, (2022). A closer look at the efficiency calibration of LaBr3(Ce) and NaI(Tl) scintillation detectors using MCNPX for various types of nuclear investigations, Heliyon, 8(10);e10839 https://doi.org/10.1016/j.heliyon.2022.e10839. DOI: https://doi.org/10.1016/j.heliyon.2022.e10839

W. Marltan, P. Venkateswara Rao, H.O. Tekin, M.I. Sayyed, R. Klement, D. Galusek, G. Lakshminarayana, P. Syam Prasad, N. Veeraiah, (2019). Analysis of red mud doped Bi2O3-B2O3-BaO glasses for application as glass solder in radiation shield repair using MCNPX simulation, Ceramics International, 45(6);7619-7626 https://doi.org/10.1016/j.ceramint.2019.01.058. DOI: https://doi.org/10.1016/j.ceramint.2019.01.058

Ghada ALMisned, Wiam Elshami, Gokhan Kilic, Erkan Ilik, Elaf Rabaa, Hesham M. H. Zakaly, Antoaneta Ene, Huseyin O. Tekin. (2023). Exploring the Radioprotective Indium (III) Oxide Screens for Mammography Scans Using a Three‐ Layer Heterogeneous Breast Phantom and MCNPX: A Comparative Study Using Clinical Findings. Medicina 59;327. https://doi.org/10.3390/ medicina59020327. DOI: https://doi.org/10.3390/medicina59020327

RSICC Computer Code Collection, MCNPX User’s Manual Version 2.4.0, in: MonteCarlo N-Particle Transport Code System for Multiple and High Energy Applications, 2002.

Mohammad W. Marashdeh, Ibrahim F. Al-Hamarneh, Eid M. Abdel Munem, , A. A. Tajuddin, A. Ariffin, Saleh Al-Omari. (2015). Determining the mass attenuation coefficient, effective atomic number, and electron density of raw wood and binderless particleboards of Rhizophora spp. by using Monte Carlo simulation, Results in Physics, 5;228-234. https://doi.org/10.1016/j.rinp.2015.08.009. DOI: https://doi.org/10.1016/j.rinp.2015.08.009

E. Kavaz, N. Ekinci, H.O. Tekin, M.I. Sayyed, B. Aygün, U. Perişanoğlu, (2019). Estimation of gamma radiation shielding qualification of newly developed glasses by using WinXCOM and MCNPX code, Progress in Nuclear Energy, 115;12-20 https://doi.org/10.1016/j.pnucene.2019.03.029. DOI: https://doi.org/10.1016/j.pnucene.2019.03.029

EMİKÖNEL, S., & AKKURT, I. (2023). Transmission Rate of Fabric to Test Radiation Shielding Properties. International Journal of Computational and Experimental Science and Engineering, 9(4), 409–411. DOI:10.22399/ijcesen.1376597

COŞKUN, A., ÇETİN, B., YİĞİTOĞLU, İbrahim, & CANIMKURBEY, B. (2023). Theoretical and Experimental Investigation of Gamma Shielding Properties of TiO2 and PbO Coated Glasses. International Journal of Computational and Experimental Science and Engineering, 9(4), 398–401. DOI:10.22399/ijcesen.1367747

Şahmaran, T., & TUĞRUL, T. (2023). Investigation of Shielding Parameters of Fast Neutrons for Some Chemotherapy Drugs by Different Calculation Methods . International Journal of Computational and Experimental Science and Engineering, 9(4), 388–393. DOI:10.22399/ijcesen.1366006

SAVAŞ, Y., BAŞARAN, B., & ÇETİN, B. (2023). The Effect of Marble Powder Additive at Different Ratios on the Radiation Absorption Parameters of Barite Based Concretes. International Journal of Computational and Experimental Science and Engineering, 9(4), 376–381. DOI:10.22399/ijcesen.1322248

Downloads

Published

2024-04-29

How to Cite

Şen BAYKAL, D. (2024). A novel approach for Technetium-99m radioisotope transportation and storage in lead-free glass containers: A comprehensive assessment through Monte Carlo simulation technique . International Journal of Computational and Experimental Science and Engineering, 10(2). https://doi.org/10.22399/ijcesen.304

Issue

Section

Research Article