The effect of Mechanical Vibration on the Heat Transfer and Flow Characteristics

Authors

  • Mustafa A. Jumaah Jumaah
  • A.P. Kamal J. Tawfeeq Tawfeeq

DOI:

https://doi.org/10.22399/ijcesen.1777

Keywords:

Improving Heat Transfer, Vibration effect, Heat Sinks, Thermal Efficiency, Forced Convection, Heat exchangers

Abstract

This review investigates the variations in flow characteristics and heat transfer performance of an annular chamber when subjected to longitudinal mechanical vibration. Considering previous research, the study demonstrates the thermal radiation induced by vibrations in engineering components, especially in heat exchangers. The research evaluates the effects of changes in vibration frequency, acceleration magnitude, and signal type on heat transfer rates and pressure drop in the annular opening. In addition, the vibration mechanism and flexible fins are investigated as alternative methods to enhance heat transfer by comparing the heat transfer coefficient between the baseline and optimal scenarios. Several studies have examined different flow configurations, spacing ratios, and flow regimes related to heat transfer and fluid dynamics around cylinders experimentally and numerically. Their results shed light on the diverse effects of spacing ratios and flow regimes on heat transfer and fluid dynamics. It is important to note that higher Reynolds numbers are associated with more uniform flow around cylinders without vortex shedding, possibly indicating the complexity within these networks. The present research is an extension of the convection of all types by vibrations, as it reveals the effect of vibration on the heat transfer performance of convection. This section presents a literature review to monitor the potential gaps in the literature related to the topic under discussion, which is helpful for further research. 

References

F. K. Tsou, (1996). Cheng-Xian Lin Experimental Investigation of the Laminar Flow Heat Transfer Enhancement in a Small-Scale Square Duct With Aqueous Carbopol Solutions, [Online]. Available: http://www.asme.org/about-

M. C. Tian, L. Cheng, Y. Q. Lin, and G. M. Zhang, (2004) Heat transfer enhancement by crossflow-induced vibration, Heat Transfer - Asian Research, 33(4);211–218, doi: 10.1002/htj.20012.

D. H. Kim, Y. H. Lee, and S. H. Chang, (2007) Effects of mechanical vibration on critical heat flux in vertical annulus tube, Nuclear Engineering and Design, 237(9);982–987, doi: 10.1016/j.nucengdes.2006.11.002.

E. I. Eid and M. E. Gomaa, (2009) Influence of vibration in enhancement of heat transfer rates from thin plannar fins, Heat and Mass Transfer/Waerme- und Stoffuebertragung, 45(6);713–726, doi: 10.1007/s00231-008-0470-9.

Zena K. Kadhim et al. (2010) Experimental study of the effect of vertical vibrations on forced convection heat transfer coefficient from circumferentially finned cylinder. [Online]. Available: www.pdffactory.com

Wissam Abid (2011) Experimental Study of the Effect Geometrical Shape and Vertical Vibrations on Forced Convection Heat Transfer Coefficient from Circumferentially Triangle-Cross Section Finned Cylinder.

A. Alaei, M. Hasanzadeh Kafshgari, and H. Atashi, (2012) A new designed heat pipe: An experimental study of the thermal performance in the presence of low-frequency vibrations, Heat and Mass Transfer/Waerme- und Stoffuebertragung, 48 (4)719–723, doi: 10.1007/s00231-011-0908-3.

Z. K. Kadhim, A. A. Mohamed, and S. A. Abed, (2012). An Experimental Study for the Effect of Vertical Forced Vibration on Pool Boiling Heat Transfer Coefficient. [Online]. Available: www.pdffactory.com

R. H. Chen, Y. J. Lin, and C. M. Lai, (2013). The influence of horizontal longitudinal vibrations and the condensation section temperature on the heat transfer performance ofa heat pipe, Heat Transfer Engineering, 34(1);45–53, doi: 10.1080/01457632.2013.694776.

A. Alaei, M. H. Kafshgari, and S. K. Rahimi, (2013). A vertical heat pipe: An experimental and statistical study of the thermal performance in the presence of low-frequency vibrations, Heat and Mass Transfer/Waerme- und Stoffuebertragung, 49(2)285–290, doi: 10.1007/s00231-012-1057-z.

C. Guo, X. Hu, W. Cao, D. Yu, and D. Tang, (2013). Effect of mechanical vibration on flow and heat transfer characteristics in rectangular microgrooves, Appl Therm Eng, 52(2);385–393, doi: 10.1016/j.applthermaleng.2012.12.010.

K. T. Park, J. W. Lee, M. G. Lee, H. J. Kim, and D. K. Kim, (2014). Nusselt number correlation for vibration-assisted convection from vertically oriented plate fins, Int J Heat Mass Transf, 78, ;522–526, doi: 10.1016/j.ijheatmasstransfer.2014.07.015.

M. A. Tawfik, A. A. Mohammed, and H. Z. Zain, (2015). Effect of Vibration on the Heat Transfer Process in the Developing Region of Annulus with Rotating Inner Cylinder.

S. K. Kadhim and. S Nasif, “Experimental investigation of the effect vertical oscillation on the heat transfer coefficient of the finned tube”, doi: 10.1051/C.

A. Hosseinian and A. H. Meghdadi Isfahani, “Experimental study of heat transfer enhancement due to the surface vibrations in a flexible double pipe heat exchanger,” Heat and Mass Transfer/Waerme- und Stoffuebertragung, 54(4);1113–1120, doi: 10.1007/s00231-017-2213-2.

A. Sathyabhama and S. P. Prashanth, (2017). Enhancement of Boiling Heat Transfer Using Surface Vibration,” Heat Transfer - Asian Research, 46(1)49–60, doi: 10.1002/htj.21197.

W. Liu, Z. Yang, B. Zhang, and P. Lv, (2017). Experimental study on the effects of mechanical vibration on the heat transfer characteristics of tubular laminar flow, Int J Heat Mass Transf, 115;169–179, doi: 10.1016/j.ijheatmasstransfer.2017.07.025.

S. Alangar, (2017), Effect of boiling surface vibration on heat transfer, Heat and Mass Transfer/Waerme- und Stoffuebertragung, 53(1);73–79, doi: 10.1007/s00231-016-1803-8.

A. W. Ezzat and S. L. Ghashim, (2019), Investigation of Optimum Heat Flux Profile Based on the Boiling Safety Factor, Journal of Engineering, 25(4);139–154, doi: 10.31026/j.eng.2019.04.10.

Z. Li, B. Chen, C. Liang, N. Li, Y. Zhao, and C. Dong, (2021). The effect of flow-induced vibration on heat and mass transfer performance of hollow fiber membranes in the humidification/dehumidification process, Membranes (Basel), 11(12), doi: 10.3390/membranes11120918.

S. K. Kadhim, S. A. Ali, N. F. D. Razak, and M. S. M. Sani, (2021). Vertical Vibrations Effect on Forced convection heat transfer from a Longitudinal Finned Tube, in IOP Conference Series: Materials Science and Engineering, IOP Publishing Ltd, Feb. 2021. doi: 10.1088/1757-899X/1062/1/012007.

A. Amiri Delouei, H. Sajjadi, and G. Ahmadi, (2022). Ultrasonic Vibration Technology to Improve the Thermal Performance of CPU Water-Cooling Systems: Experimental Investigation, Water (Switzerland), 14(24), doi: 10.3390/w14244000.

N. S. Deshpande and M. Barigou, “Vibrational low of non-Newtonian nuids,” 2001. [Online]. Available: www.elsevier.nl/locate/ces

M. H. Al-Hafidh and A. M. Rishem, (2006) The Effect Of Longitudinal Vibration On Laminar Forced Convection Heat Transfer In A Horizontal Tube.

A. H. Majid M Al-Shorafa and M. H. M Al-Shorafa, “A Study Of Influence Of Vertical Vibration On Heat Transfer Coefficient From Horizontal Cylinders Key Words Influence of Vertical Vibration, Heat Transfer From Horizontal Cylinders, Heat Transfer Coefficient A Study Of Influence Of Vertical Vibration On Heat Transfer Coefficient From Horizontal Cylinders.”

K. Shoele and R. Mittal, (2014), Computational study of flow-induced vibration of a reed in a channel and effect on convective heat transfer, Physics of Fluids, 26(12) doi: 10.1063/1.4903793.

B. Khalil Khudhair and A. M. Salh, (2020). The Effect Of Vibration On Natural Convection Heat Transfer In An Enclosed Square Cavity.

L. Li, X. Sun, H. Kang, and Y. Wang, (2024) Influence of vibration parameters and fin structure parameters on heat transfer performance under vibration conditions, Case Studies in Thermal Engineering, 57, doi: 10.1016/j.csite.2024.104311.

A. Mitsuishi, M. Sakoh, T. Shimura, K. Iwamoto, A. Murata, and H. Mamori, (2020). Direct numerical simulation of convective heat transfer in a pipe with transverse vibration, Int J Heat Mass Transf, 148, doi: 10.1016/j.ijheatmasstransfer.2019.119048.

A. H. D. K. Rasangika, M. S. Nasif, W. Pao, and R. Al-Waked, (2022). Numerical Investigation of the Effect of Square and Sinusoidal Waves Vibration Parameters on Heat Sink Forced Convective Heat Transfer Enhancement, Applied Sciences (Switzerland), 12(10), doi: 10.3390/app12104911.

A. H. D. K. Rasangika, M. S. Nasif, W. Pao, and R. Al-Waked, (2023). CFD Investigation of the Effect of Vibration Direction on the Heat Transfer Enhancement of Heat Sink, CFD Letters, 15(10);170–185, doi: 10.37934/cfdl.15.10.170185.

L. Bronfenbrener, L. Grinis, and E. Korin, “Experimental Study of Heat Transfer Intensification under Vibration Condition.”

L. Li, X. Sun, H. Kang, and Y. Wang, (2024) Influence of vibration parameters and fin structure parameters on heat transfer performance under vibration conditions, Case Studies in Thermal Engineering, 57, doi: 10.1016/j.csite.2024.104311.

A. M. Mohammed, S. Kapan, M. Sen, and N. Celi̇k, (2021). Effect of vibration on heat transfer and pressure drop in a heat exchanger with turbulator, Case Studies in Thermal Engineering, 28, doi: 10.1016/j.csite.2021.101680.

“Conversion Factors from BG to SI Units.”

Y. H. Chen, Y. F. Yue, Y. Zhang, R. P. Li, and X. Xu, “Numerical Investigation of Vibration Suppression for the Combined Device of Non-Newtonian Fluids Coupled Elastic Baffle,” Journal of Applied Fluid Mechanics, vol. 16, no. 3, pp. 591–602, 2023, doi: 10.47176/jafm.16.03.1311.

S. K. Mishra, A. Mishra, P. Singh, and M. Dubey, (2024) Heat Transfer and Entropy Generation in Vibrational Flow: Newtonian vs. Inelastic Non-Newtonian Fluid, Journal of Applied Fluid Mechanics, 17(11);2349–2360, doi: 10.47176/jafm.17.11.2699.

L. Cheng, T. Luan, W. Du, and M. Xu, (2009) Heat transfer enhancement by flow-induced vibration in heat exchangers,” Int J Heat Mass Transf, 52(3–4);1053–1057, doi: 10.1016/j.ijheatmasstransfer.2008.05.037.

S. A. B. Al Omari, A. M. Ghazal, E. Elnajjar, and Z. A. Qureshi, (2021). Vibration-enhanced direct contact heat exchange using gallium as a solid phase change material, International Communications in Heat and Mass Transfer, 120, doi: 10.1016/j.icheatmasstransfer.2020.104990.

M. Eesa and M. Barigou, (2008) CFD analysis of viscous non-Newtonian flow under the influence of a superimposed rotational vibration, Comput Fluids, 37(1);24–34, doi: 10.1016/j.compfluid.2007.03.015.

M. A. Zaeem, S. Lapin, and K. Matveev, “The Effect of Vibration on Flow Rate of Non-Newtonian Fluid.” [Online]. Available: http://www.siam.org/journals/ojsa.php

Kathirvel M., & Chandrasekaran M. (2025). Predictive Maintenance and Energy Optimization with AI-Driven IoT Framework in Textile Manufacturing Industry. International Journal of Computational and Experimental Science and Engineering, 11(2). https://doi.org/10.22399/ijcesen.1584

Kabashi, G., Kola, L., Kabashi, S., & Ajredini, F. (2024). Assessment of climate change mitigation potential of the Kosovo energy and transport sector . International Journal of Computational and Experimental Science and Engineering, 10(3). https://doi.org/10.22399/ijcesen.325

R.T. Subhalakshmi, S. Geetha, S. Dhanabal, & M. Balakrishnan. (2025). ALPOA: Adaptive Learning Path Optimization Algorithm for Personalized E-Learning Experiences. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.910

Abu Halka, M., & Nasereddin, S. (2025). The Role of Social Media in Maternal Health: Balancing Awareness, Misinformation, and Commercial Interests. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.1365

Downloads

Published

2025-04-20

How to Cite

Mustafa A. Jumaah, & A.P. Kamal J. Tawfeeq. (2025). The effect of Mechanical Vibration on the Heat Transfer and Flow Characteristics . International Journal of Computational and Experimental Science and Engineering, 11(2). https://doi.org/10.22399/ijcesen.1777

Issue

Section

Research Article