Effective Atomic Numbers of Glass Samples

Authors

  • Nurdan Karpuz Amasya University

DOI:

https://doi.org/10.22399/ijcesen.340

Keywords:

radiation shielding, Magnesium borosilicate glasses, effective atomic number

Abstract

Effective atomic numbers are a term used to understand the interaction of a compound or material with radiation. In particular, this term is often used for materials with complex structures that can be expressed by a single fixed atomic number.

If different elements in a material are present in different concentrations, the effective atomic number of the material can be calculated by considering the contribution of each element. This is a useful method to better understand the response of the material to radiation or the effect of radiation within the material. In particular, when radiation passes through or acts on the material, the effective atomic number plays an important role in determining factors such as the material's radiation exposure properties, absorption or scattering.

Effective atomic numbers are used in radiation interaction analyses in various fields such as materials science, medicine, geophysics and industry. This concept is used to express in a simpler way the radiation properties of compounds in which different elements are combined.

In this study, the effective atomic numbers of magnesium borosilicate glasses were investigated. Such studies are important in the field of materials science and glass technology because the chemical constituents of glass and their interactions play a decisive role in the properties of glass.

Magnesium borosilicate glasses are often used in industrial applications. The properties of these glasses depend on the amount of elements they contain and their chemical structure. Effective atomic numbers can be used to understand the specific properties of a material.

By determining the effective atomic numbers of the elements contained in the glass, this study aims to provide an important basis for understanding the properties of the material, such as radiation exposure, electrical properties or optical properties.

References

Akkurt, I., & El-Khayatt, A. M. (2013). The effect of barite proportion on neutron and gamma-ray shielding. Annals of Nuclear Energy, 51, 5–9. DOI:10.1016/j. anucene.2012.08.026

Akkurt, I., Basyigit. C., Kilincarslan, S., & Beycioglu, A. (2010). Prediction of photon attenuation coefficients of heavy concrete by fuzzy logic. Journal of The Franklin Institute- Engineering And Applied Mathetamics., 347–9, 1589–1597. DOI:10.1016/J. Jfranklin.2010.06.002

Akkurt, I., Emikönel, S., Akarslan, F., Günoglu, K., Kilinçarslan, S., & Üncü, I. S. (2015). Barite effect on radiation shielding properties of cotton -polyester fabric. Acta Physica Polonica A, 128. DOI:10.12693/Aphyspola.128.B-53. B-53-54.

Aygun, Z., & Aygün, M. (2023). An analysis on radiation protection abilities of different colored obsidians. International Journal of Computational and Experimental Science and Engineering, 9(2), 170–176. DOI:10.22399/ijcesen.1076556

Boodaghi Malidarre, R., Khabaz, R., Benam, M. R., & Zanganeh, V. (2019). A feasibility study to reduce the contamination of photoneutrons and photons in organs/tissues during radiotherapy. Iran. J. Med. Phys., 17, 366–373. DOI:10.22038/ ijmp.2019.40879.1579

Günay, O., Altıntas, I. N., Demir, M., & Yeyin, N. (2023). Dose calibrator measurements in the case of voltage fluctuations. International Journal of Computational and Experimental Science and Engineering, 9(2), 161–164. DOI:10.22399/ ijcesen.1303582

Oruncak, B. (2023). Computation of neutron coefficients for B2O3 reinforced composite. International Journal of Computational and Experimental Science and Engineering, 9(2), 50–53. DO:10.22399/ijcesen.1290497

Rwashdi, Q. A. A. D., Waheed, F., Günoglu, K., & Akkurt, I. (2022). Experimental testing of the radiation shielding properties for steel. International Journal of Computational and Experimental Science and Engineering, 8(3), 74–76. DOI:10.22399/ ijcesen.1067028

Jawad, A.A., Demirkol, N., Günoglu, K., Akkurt, I., (2019). Radiation shielding properties of some ceramic wasted samples. Int. J. Environ. Sci. Technol. 16, 5039–5042. DOI:10.1007/s13762-019-02240-7.

Akkurt, I., (2007). Effective atomic numbers for Fe–Mn alloy using transmission experiment Chinese. Phys. Lett. 24, 2812. DOI:10.1088/0256-307X/24/ 10/027.

Akkurt, I., El-Khayatt, A.M., (2013). The effect of barite proportion on neutron and gamma-ray shielding. Ann. Nucl. Energy 51, 5–9. DOI:10.1016/j. anucene.2012.08.026.

Akkurt, I., Boodaghi Malidarre, R., (2022). Physical, structural, and mechanical properties of the concrete by FLUKA code and phy-X/PSD software. Radiat. Phys. Chem. 193, 109958 DOI:10.1016/j.radphyschem.2021.109958.

Akkurt, I., Akyıldırım, H., Karipçin, F., Mavi, B., (2012). Chemical corrosion on gamma-ray attenuation properties of barite concrete. J. Saudi Chem. Soc. 16–2, 199–202. DOI:10.1016/j.jscs.2011.01.003.

Altunsoy, E.E., Tekin, H.O., Mesbahi, A., Akkurt, I., (2020). MCNPX simulation for radiation dose absorption of anatomical regions and some organs. Acta Phys. Pol., A 137–4, 561. DOI:10.12693/APhysPolA.137.561.

Boodaghi Malidarre, R., Akkurt, I., (2021). Monte Carlo simulation study on TeO2–Bi2O–PbO–MgO–B2O3 glass for neutron-gamma 252Cf source. J. Mater. Sci. Mater. Electron. 32, 11666–11682. DOI:10.1007/s10854-021-05776-y.

Demir, N., Tarim, U.A., Popovici, M.A., Demirci, Z.N., Gurler, O., Akkurt, I., (2013). Investigation of mass attenuation coefficients of water, concrete and bakelite at different energies using the FLUKA Monte Carlo code. J. Radioanal. Nucl. Chem. 298, 1303–1307. DOI:10.1007/s10967-013-2494-y.

Waheed, F., Imamoglu, M., Karpuz, N., Ovalıoglu, H., (2022). Simulation of neutrons shielding properties for some medical materials. International Journal of Computational and Experimental Science and Engineering 8 (1), 5–8. DOI:10.22399/ijcesen.1032359.

Akkurt, Iskender, Tekin, Huseyin Ozan, (2020). Radiological Parameters for bismuth oxide Glasses using Phy-X/PSD software. Emerg. Mater. Res. 9–3, 1020–1027. DOI:10.1680/jemmr.20.00098.

Akkurt, I., Basyigit, C., Kilincarslan, S., Mavi, B., (2005). The shielding of g-rays by concrete produced with barite. Prog. Nucl. Energy 46 (1), 1–11.

Akkurt, I., Basyigit, C., Kilincarslan, S., Mavi, B., Akkurt, A., (2006). Radiation shielding of concretes containing different aggregates. Cement Concr. Compos. 28 (2), 153–157. DOI:10.1016/j.cemconcomp.2005.09.006.

Boodaghi Malidarre, R., Akkurt, I., (2022). Evaluation of bioactive borosilicate added Ag glasses in terms of radiation shielding, structural, optical, and electrical properties. Silicon. DOI:10.1007/s12633-022-01925-y.

Almisned, G., Sen Baykal, D., Susoy, G., Kilic, G., Zakaly H, M.H., Ene, A., Tekin, H.O., (2022a). Determination of gamma-ray transmission factors of WO3–TeO2–B2O3 glasses using MCPX Monte Carlo code for shielding and protection purposes. Appl. Rheol. 32 (1). DOI:10.1515/arh-2022-0132

Almisned, G., Sen Baykal, D., Kilic, G., Susoy, G., Zakaly H, M.H., Ene, A., Tekin, H.O., (2022b). Assessment of the usability conditions of Sb2O3-PbO-B2O3 glasses for shielding purposes in some medical radioisotope and a wide gamma-ray energy spectrum. Appl. Rheol. 32 (1). DOI:10.1515/arh-2022-0133

Boodaghi Malidarre, R., Akkurt, I., (2021). Monte Carlo simulation study on TeO2–Bi2O–PbO–MgO–B2O3 glass for neutron-gamma 252Cf source. J. Mater. Sci. Mater. Electron. 32, 11666–11682. DOI:10.1007/s10854-021-05776-y.

Biswas, R., Sahadath, H., Mollah, A.S., Huq, Md F., (2016). Calculation of gamma-ray attenuation parameters for locally developed shielding material: Polyboron. Journal of Radiation Research and Applied Sciences 9, 26–34. DOI:10.1016/j.jrras.2015.08.005

Hanfi, M.Y., Sayyed, M.I., Lacomme, E.K., Mahmoud, K.A., Akkurt, I., (2020). The influence of MgO on the radiation protection and mechanical roperties of tellurite Glasses. Nucl. Eng. Technol., DOI:10.1016/j.net.2020.12.012.

Malidarre, R.B., Akkurt, I., Kavas, T., (2021). Monte Carlo simulation on shielding properties of neutron-gamma from 252Cf source for Alumino-Boro-Silicate Glasses. Radiat. Phys. Chem. 186, 109540. DOI:10.1016/j. radphyschem.2021.109540.

Oruncak, B., (2022). Gamma-ray shielding properties of Nd2O3 added iron-boron- Phosphate based composites. Open Chem. 20 (1) DOI:10.1515/chem- 2022-0143.

Sarihan, M., (2022). Simulation of gamma-ray shielding properties for materials of medical interest. Open Chem. 20 (1), 81–87. DOI:10.1515/chem-2021-0118.

Sarihan, M., Boodaghi Malidarre, R., & Akkurt, I. (2021). An extensive study on the neutron-gamma shielding and mass stopping power of (70-x) CRT–30K2O–xBaO glass system for 252Cf neutron source. Environmental Technology. DOI:10.1080/ 09593330.2021.1987529

Tekin, H.O., Cavli, B., Altunsoy, E.E., Manici, T., Ozturk, C., Karakas, H.M., (2018). An investigation on radiation protection and shielding properties of 16 slice computed tomography (CT) facilities. International Journal of Computational and Experimental Science and Engineering 4–2, 37–40. DOI:10.22399/ ijcesen.408231.

Tekin, H.O., Almisned, Susoy G., Zakaly, G., Issa, H.M.H., Shams, A.M., Kilic, G., Rammah, Y.S., Lakshminarayana, G., Ene, A., (2022a). A detailed investigation on highly dense CuZr bulk metallic glasses for shielding purposes. Open Chem. 20 (1), 69–80. DOI:10.1515/chem-2022-0127.

Tekin, H.O., Almisned, G., Zakaly, H.M.H., Zamil, A., Khoucheich, D., Bilal, G., Al- Sammarraie, L., Issa, Shams A.M., Al-Buriahi, M., Ene, A., (2022b). Gamma, neutron, and heavy charged ion shielding properties of Er3+-doped and Sm3+-doped zinc borate glasses. Open Chem. 20 (1), 130–145. DOI:10.1515/chem-2022- 0128.

Sen Baykal, D., Tekin, H., Çakırlı Mutlu, R., (2021). An investigation on radiation shielding properties of borosilicate glass systems. International Journal of Computational and Experimental Science and Engineering 7 (2), 99–108. DOI:10.22399/ ijcesen.960151.

Issa, Shams A.M., Saddeek, Y.B., Sayyed, M.I., Tekin, H.O., Kilicoglu, O., (2019). Radiation shielding features using MCNPX code and mechanical properties of the PbO Na2O B2O3 CaO Al2O3 SiO2 glass systems. Composites, Part B 167, 231–240. DOI:10.1016/j.compositesb.2018.12.029.

Karpuz, N. (2023). Radiation shielding properties of glass composition. Journal of Radiation Research and Applied Sciences, Volume 16, Issue 4, December 2023, 100689. DOI:10.1016/j.jrras.2023.100689

Malidarre, R.B., Akkurt, I., (2022). A comprehensive study on the charged-uncharged particle shielding features of (70 x) CRT–30K2O–xBaO glass system. J. Australas. Ceram. Soc. 58, 841–850. DOI:10.1007/s41779-022-00733-2.

Akkurt, Iskender, Tekin, Huseyin Ozan, (2020). Radiological Parameters for bismuth oxide Glasses using Phy-X/PSD software. Emerg. Mater. Res. 9–3, 1020–1027. DOI:10.1680/jemmr.20.00098.

Boodaghi Malidarre, R., Akkurt, I., (2021). Monte Carlo simulation study on TeO2–Bi2O–PbO–MgO–B2O3 glass for neutron-gamma 252Cf source. J. Mater. Sci. Mater. Electron. 32, 11666–11682. DOI:10.1007/s10854-021-05776-y.

Akkurt, Iskender, Malidarreh, Parisa Boodaghi, Malidarre, Roya Boodaghi, (2021a). Simulation and prediction the attenuation behavior of the KNN-LMN based lead free ceramics by FLUKA code and artificial neural network (ANN) - based algorithm. Environ. Technol. DOI:10.1080/09593330.2021.2008017.

Malidarre, R.B., Akkurt, I., Kavas, T., (2021). Monte Carlo simulation on shielding properties of neutron-gamma from 252Cf source for Alumino-Boro-Silicate Glasses. Radiat. Phys. Chem. 186, 109540. DOI:10.1016/j. radphyschem.2021.109540.

Boodaghi Malidarre, R., Khabaz, R., Benam, M.R., Zanganeh, V., (2019). A feasibility study to reduce the contamination of photoneutrons and photons in organs/tissues during radiotherapy. Iran. J. Med. Phys. 17, 366–373. DOI:10.22038/ ijmp.2019.40879.1579.

Boodaghi Malidarre, R., Akkurt, I., Boodaghi Malidarreh, P., Arslankaya, S., (2022). Investigation and ANN-based prediction of the radiation shielding, structural and mechanical properties of the Hydroxyapatite (HAP) bio-composite as artificial bone. Radiat. Phys. Chem. 197, 110208. DOI:10.1016/j. radphyschem.2022.110208.

Akkurt, I., Alomari, A., Imamoglu, M. Y., Ekmekci, I., (2023). Medical radiation shielding in terms of effective atomic numbers and electron densities of some glasses. Radiation Physics and Chemistry 206, 110767. DOI:10.1016/j.radphyschem.2023.110767

Sharma, R., Sharma, V., Singh, P. S., Singh, T., (2012). Effective atomic numbers for some calcium–strontium-borate glasses. Annals of Nuclear Energy 45, 144–149. DOI:10.1016/j.anucene.2012.03.005

Gıll, H., Kaur, G., Sıngh, K., Kumar, V., Sıngh, J., (1998). Study of effective atomic numbers in some glasses and rocks. Radiat. Phys. Chem. Vol.51, No.4-6, pp.671-672. DOI:10.1016/S0969-806X(97)00232-6

Şakar, E., Özpolat, Ö.F., Alım, B., Sayyed, M.I., Kurudirek, M., )2020). Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant toradiation shielding and dosimetry. Radiation Physics and Chemistry 166, 108496.

Downloads

Published

2024-06-23

How to Cite

Karpuz, N. (2024). Effective Atomic Numbers of Glass Samples. International Journal of Computational and Experimental Science and Engineering, 10(2). https://doi.org/10.22399/ijcesen.340

Issue

Section

Research Article