Comparison of radiation dose parameters between LDCT and SDCT in pediatric brain CT Protocols

Authors

  • Hussein Majid Department of Physiology, College of Medicine, University of Baghdad, Baghdad, Iraq,
  • Mawada M. Funjan

DOI:

https://doi.org/10.22399/ijcesen.3431

Keywords:

low-dose CT protocol, Standard -dose CT, Radiation dose, Pediatric radiation exposure

Abstract

Brain imaging is the most common form of CT scan for kids, which shows how important it is to have protocols that use low radiation doses to lower the chance of harm. This is important since kids are more sensitive to radiation than adults. The study aimed to compare parameter CT low-dose protocol and parameter a standard-dose protocol. The objective of this study was to perform a comparative analysis of parameter values between pediatric head CT protocols utilizing low-dose and standard-dose techniques.This was cross-sectional study. A total of 100 CT scans of the head, Albatol teaching Hospital In the diyala governorate. SPSS software version 2019 was used to analyze the results. The results showed a significant difference in both radiation dose and examination time between the standard and low-dose protocols (p > 0.05), with a lower radiation dose recorded in the low-dose protocol group, while no statistically significant differences were recorded in examination length between the two groups (p = 0.7342). The low-dose CT protocol significantly reduced radiation exposure in pediatric patients by lowering CTDIvol, DLP, and effective dose, while also decreasing tube current and scan time. Scan length showed no significant influence on dose reduction.

References

[1] Spampinato, M. V., Stalcup, S., Matheus, M. G., Byington, K., Tyler, M., Bickley, S., & Tipnis, S. (2018). Radiation dose and image quality in pediatric head ct. Radiation protection dosimetry, 182(3), 310–316. https://doi.org/10.1093/rpd/ncy066

[2] Kim, J. N., Park, H. J., Kim, M. S., Kook, S. H., Ham, S. Y., Kim, E., & Park, S. J. (2021). Radiation dose reduction in extremity multi-detector CT: A comparison of image quality with a standard dose protocol. European journal of radiology, 135, 109405. https://doi.org/10.1016/j.ejrad.2020.109405

[3] Abdullah Almujally a, Nissren Tamam b, Abdelmoneim Sulieman c, Duong Thanh Tai d, Hiba Omer e, Nouf Abuhadi f, Hassan Salah g, Essam Mattar h, Mayeen Uddin Khandaker i j, David Bradley i k. (2022). Evaluation of paediatric computed tomography imaging for brain, and abdomen procedures. Radiation Physics and Chemistry, 110271. https://doi.org/10.1016/j.radphyschem.2022.110271

[4] Satharasinghe, D., Jeyasugiththan, J., Wanninayake, W. M. N. M. B., Pallewatte, A. S., & Samarasinghe, R. A. N. K. K. (2022). Patient size as a parameter for determining Diagnostic Reference Levels for paediatric Computed Tomography (CT) procedures. Physica medica: PM: an international journal devoted to the applications of physics to medicine and biology: official journal of the Italian Association of Biomedical Physics (AIFB), 102, 55–65. https://doi.org/10.1016/j.ejmp.2022.09.004

[5] Gao, Y., Quinn, B., Pandit-Taskar, N., Behr, G., Mahmood, U., Long, D., Xu, X. G., St Germain, J., & Dauer, L. T. (2018). Patient-specific organ and effective dose estimates in pediatric oncology computed tomography. Physica medica: PM: an international journal devoted to the applications of physics to medicine and biology: official journal of the Italian Association of Biomedical Physics (AIFB), 45, 146–155. https://doi.org/10.1016/j.ejmp.2017.12.013

[6] Panagiotis Papadimitroulas; Theodora Kostou; Konstantinos Chatzipapas; Dimitris Visvikis; Konstantinos A. Mountris; Vincent Jaouen. (2019). A review on personalized pediatric dosimetry applications using advanced computational tools.

[7] Huang, W. Y., Muo, C. H., Lin, C. Y., Jen, Y. M., Yang, M. H., Lin, J. C., Sung, F. C., & Kao, C. H. (2014). Paediatric head CT scan and subsequent risk of malignancy and benign brain tumour: a nation-wide population-based cohort study. British journal of cancer, 110(9), 2354–2360. https://doi.org/10.1038/bjc.2014.103

[8] Park, J. E., Choi, Y. H., Cheon, J. E., Kim, W. S., Kim, I. O., Cho, H. S., Ryu, Y. J., & Kim, Y. J. (2017). Image quality and radiation dose of brain computed tomography in children: effects of decreasing tube voltage from 120 kVp to 80 kVp. Pediatric radiology, 47(6), 710–717. https://doi.org/10.1007/s00247-017-3799-8

[9] Trattner, S., Pearson, G. D. N., Chin, C., Cody, D. D., Gupta, R., Hess, C. P., Kalra, M. K., Kofler, J. M., Jr, Krishnam, M. S., & Einstein, A. J. (2014). Standardization and optimization of CT protocols to achieve low dose. Journal of the American College of Radiology:JACR, 11(3),271–278. https://doi.org/10.1016/j.jacr.2013.10.016

[10] Raman, S. P., Mahesh, M., Blasko, R. V., & Fishman, E. K. (2013). CT scan parameters and radiation dose: practical advice for radiologists. Journal of the American College of Radiology: JACR, 10(11), 840–846. https://doi.org/10.1016/j.jacr.2013.05.032

[11] Xu, J., He, X., Xiao, H., & Xu, J. (2019). Comparative Study of Volume Computed Tomography Dose Index and Size-Specific Dose Estimate Head in Computed Tomography Examination for Adult Patients Based on the Mode of Automatic Tube Current Modulation. Medical science monitor: international medical journal of experimental and clinical research, 25, 71–76. https://doi.org/10.12659/MSM.913927

[12] Li, B., & Behrman, R. H. (2012). Comment on the report of AAPM TG 204: size-specific dose estimates (SSDE) in pediatric and adult body CT examinations [report of AAPM TG 204, 2011]. Medicalphysics, 39(7),4613–4616. https://doi.org/10.1118/1.4725756

[13] Yabuuchi, H., Kamitani, T., Sagiyama, K., Yamasaki, Y., Matsuura, Y., Hino, T., Tsutsui, S., Kondo, M., Shirasaka, T., & Honda, H. (2018). Clinical application of radiation dose reduction for head and neck CT. European journal of radiology, 107, 209–215. https://doi.org/10.1016/j.ejrad.2018.08.021

[14] Zhao, A., Fopma, S., & Agrawal, R. (2022). Demystifying the CT Radiation Dose Sheet. Radiographics : a review publication of the Radiological Society of North America, Inc, 42(4), 1239–1250. https://doi.org/10.1148/rg.210107

[15] Priyanka, Kadavigere, R., & Sukumar, S. (2024). Low Dose Pediatric CT Head Protocol using Iterative Reconstruction Techniques: A Comparison with Standard Dose Protocol. Clinical neuroradiology, 34(1), 229–239. https://doi.org/10.1007/s00062-023-01361-4

[16] Rashma, R., Kumar, J., Garg, A., Batra, R., Meher, R., & Phulia, A. (2024). Low-dose versus standard-dose normal temporal bone CT in children: A comparison study. Egyptian Journal of Radiology and Nuclear Medicine.

[17] Nakai, Y., Miyazaki, O., Kitamura, M., Imai, R., Okamoto, R., Tsutsumi, Y., Miyasaka, M., Ogiwara, H., Miura, H., Yamada, K., & Nosaka, S. (2023). Evaluation of radiation dose reduction in head CT using the half-dose method. Japanese journal of radiology, 41(8), 872–881. https://doi.org/10.1007/s11604-023-01410-5

[18] Fatma Mohamed Sherif, Ayman Mokhtar Said, Yara Nagi Elsayed and Sabry Alameldeen Elmogy, (2020). Value of using adaptive statistical iterative reconstruction-V (ASIR-V) technology in pediatric head CT dose reduction. Egyptian Journal of Radiology and Nuclear Medicine.

[19] Udayasankar, U. K., Braithwaite, K., Arvaniti, M., Tudorascu, D., Small, W. C., Little, S., & Palasis, S., (2008). Low-dose nonenhanced head CT protocol for follow-up evaluation of children with ventriculoperitoneal shunt: reduction of radiation and effect on image quality. AJNR. American journal of neuroradiology, 29(4), 802–806. https://doi.org/10.3174/ajnr.A0923

[20] Greffier, J., Pereira, F., Macri, F., Beregi, J. P., & Larbi, A. (2016). CT dose reduction using Automatic Exposure Control and iterative reconstruction: A chest paediatric phantoms study. Physica medica: PM: an international journal devoted to the applications of physics to medicine and biology: official journal of the Italian Association of Biomedical Physics (AIFB), 32(4), 582–589. https://doi.org/10.1016/j.ejmp.2016.03.007

[21] Zacharias, C., Alessio, A. M., Otto, R. K., Iyer, R. S., Philips, G. S., Swanson, J. O., & Thapa, M. M. (2013). Pediatric CT: strategies to lower radiation dose. AJR. American journal of roentgenology, 200(5), 950–956. https://doi.org/10.2214/AJR.12.9026

[22] Simmons, C., & Milburn, J. (2019). Impact of Low-Dose Computed Tomography on Computed Tomography Orders and Scan Length. Ochsner journal, 19(4), 303–308. https://doi.org/10.31486/toj.19.0008

[23] Kadhim, D. H., Hamoudi, Z. A., Funjan, M. M., Jamal, R., & Hasan, A. H. (2025). Relationship between entrance surface skin exposure for Iraqi women with compressed breast thickness in mammography. Diyala Journal of Medicine, 18(1), 70–78. https://doi.org/10.26505/djm.2801181248

[24] Fadhil, A.A., Joori, S.M., & Aljanabi, S.M. (2020). Spectrum of chest computed tomography findings of novel coronavirus disease 2019 in Medical City in Baghdad: A case series. Journal of the Faculty of Medicine Baghdad, 62(1–2), 6–12. https://doi.org/10.31350/jmedfacbagh.v62.i1-2.1

[25] Hameed D, Funjan MM, Al-Sabbagh AA., (2024). Relationship Between Anthropometric Measurements with Radiation Dose During Screening Mammography. Journal of Ecohumanism. 3(4):1598-605. https://doi.org/10.62754/joe.

[26] Abdulrazzaq, A.A., (2012). An anatomical-computerized tomography (CT scan) study on the arteriovenous malformations (AVMs) in the brain of Iraqi patients. Journal of the Faculty of Medicine Baghdad, 54(2), 111–117. https://repository.uobaghdad.edu.iq/articles/iqjmc-1350

[27] Mawada, A. (2009). A study of left atrial appendage flow by Doppler transesophageal echocardiography in patients with atrial septal defect. Al-Nahrain Journal of Science, 12(1), 52–60.

[28] Mahdi, A.H., & Saleh, R.H. (2021). CT scan value of temporal bone in assessment of congenital deafness. Journal of the Faculty of Medicine Baghdad, 63(2), 94–100. https://doi.org/10.31350/jmedfacbagh.v63.i2.12

[29] Al-Fatlawi, L.A., & Al-Janabi, S.M., (2021). The role of CT scan in evaluation of pulmonary embolism. Journal of the Faculty of Medicine Baghdad, 63(3), 175–180. https://doi.org/10.31350/jmedfacbagh.v63.i3.14

[30] Al-Jubouri, A.A., & Al-Timimi, H.K. (2019). The diagnostic value of multi-slice CT in detecting paranasal sinus pathology. Journal of the Faculty of Medicine Baghdad, 61(2), 100–106. https://doi.org/10.31350/jmedfacbagh.v61.i2.11

Downloads

Published

2025-07-13

How to Cite

Hussein Majid, & Mawada M. Funjan. (2025). Comparison of radiation dose parameters between LDCT and SDCT in pediatric brain CT Protocols. International Journal of Computational and Experimental Science and Engineering, 11(3). https://doi.org/10.22399/ijcesen.3431

Issue

Section

Research Article