Optimizing T1-Weighted MRI Image quality: A Comparative Study in two Acquisition protocols in Lumbar Spine Imaging

Authors

  • Amna saeed qaeed Department of Physiology, College of Medicine, University of Baghdad, Baghdad, Iraq.
  • Mawada M. Funjan
  • Maryam Issa Al-Ani

DOI:

https://doi.org/10.22399/ijcesen.3517

Keywords:

T1-Weighted MRI Image Quality, Two Acquisition Protocols, Lumbar Spine Imaging

Abstract

Objective: To assess the effect of different acquisition parameters on the quality of T1-weighted sagittal lumbar spine MRI images using manual measurements, automated quantitative analysis, and expert visual assessment.

Materials and Methods

 This was a cross-sectional study of 200 lumbar MRI scans performed with a 1.5T Siemens Avanto. Two T1-Weighted imaging protocols that differed in TR, matrix size, slice thickness, FOV read, and number of slices. Objective image quality metrics, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), edge strength, Laplacian variance, and entropy, were obtained. using manual measurement for ROIs, and automatic measurement using image processing (Python). Statistical comparisons were conducted using SPSS with a significance level of p<0.05.

Results

The second protocol (shorter TR, larger voxel size, lower spatial resolution) had a significantly higher signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). On the other hand, a better edge strength was obtained with the first Protocol (longer TR, higher resolution, smaller voxels); however, Laplacian variance and entropy showed no statistical difference. Visual assessment by a radiologist preferred the first protocol for tissue contrast, though both protocols were clinically acceptable.

Conclusion

 An optimal MRI acquisition parameter, particularly TR, spatial resolution, and voxel size, improves the quality of T1-weighted images in the lumbar spine. These results may encourage optimization of protocols to balance image quality and scan efficiency.

References

[1] Ali, Z.., & Funjan, M. M.. (2024). Classification of Brain Infarction using Deep Learning techniques on Magnetic Resonance Imaging (MRI). Journal of Ecohumanism, 3(5), 92–98. https://doi.org/10.62754/joe.v3i5.3876

[2] Rashid, N. R., Al-Hilli, M., Aliasghar, A., & Shaker, Q. M. (2015). Magnetic resonance imaging of the left wrist: assessment of the bone age in a sample of healthy Iraqi adolescent males. Journal of the Faculty of Medicine Baghdad, 57(1), 22-26. https://doi.org/10.32007/jfacmedbagdad.571301

[3] AL-Ani, M. I., Fahed, Q. A., & Shyaa , A. I. (2023). Clinical Importance of Imaging Anatomical Signs in Predicting Transverse Sinus Dominance Using Conventional Magnetic Resonance Imaging. Journal of the Faculty of Medicine Baghdad, 65(1), 14-https://doi.org/10.32007/jfacmedbagdad.6511910

[4] Joori, S. M., Fadhil, A. A., Abdullateef, W. M., & Jabir, M. M. (2016). Magnetic Resonance Imaging in sonographically indeterminate adnexal masses. Journal of the Faculty of Medicine Baghdad, 57(4), 273-278. https://doi.org/10.32007/jfacmedbagdad.574389

[5] Issa, S. Q., Mohson, khaleel I., & Fadhil, N. K. (2019). The accuracy of pelvic magnetic resonance imaging in the diagnosis of ovarian malignancy in Iraqi patients in comparison with histopathology. Journal of the Faculty of Medicine Baghdad, 60(4), 202-207. https://doi.org/10.32007/jfacmedbagdad.604479

[6] Joori, S. M., Albeer, M. R., & Al-Baldawi, D. S. (2013). Extraspinal incidental findings of spinal MRI. Journal of the Faculty of Medicine Baghdad, 55(3), 219-223. https://doi.org/10.32007/jfacmedbagdad.553618

[7] Zepeda Fernandez, C. H., Lopez Tellez, C. A., Flores Orea, Y., & Moreno Barbosa, E. (2022). Total angular momentum of water molecule and magnetic field interaction. arXiv preprint, arXiv:2210.01867. https://doi.org/10.48550/arXiv.2210.01867

[8] Muzamil, A., Nurdin, D. Z. I., Rohmah, J., Rulaningtyas, R., & Astuti, S. D. (2023). Cervical MRI Image Quality Optimization based on Repetition Time (TR) and Echo Train Length (ETL) Settings. Hellenic Journal of Radiology, 8(2). https://doi.org/10.36185/528

[9] Ginat, D. T., Fong, M. W., Tuttle, D. J., Hobbs, S. K., & Vyas, R. C. (2011). Cardiac Imaging: Part 1, MR Pulse Sequences, Imaging Planes, and Basic Anatomy. American Journal of Roentgenology, 197(4), 808–815. doi:10.2214/ajr.10.7231

[10] Boursianis, T.; Kalaitzakis, G.; Nikiforaki, K.; Kosteletou, E.; Antypa, D.; Gourzoulidis, G.A.; Karantanas, A.; Papadaki, E.; Simos, P.; Maris, T.G.; et al. The Significance of Echo Time in fMRI BOLD Contrast: AClinical Study during Motor and Visual Activation Tasks at 1.5 T.

[11] Strzelecki, M., Piórkowski, A., & Obuchowicz, R. (2022). Effect of Matrix Size Reduction on Textural Information in Clinical Magnetic Resonance Imaging. Journal of Clinical Medicine, 11(9), 2526. https://doi.org/10.3390/jcm11092526

[12] Brown, R. W., Cheng, Y.-C. N., Haacke, E. M., Thompson, M. R., & Venkatesan, R. (2014). Magnetic Resonance Imaging: Physical Principles and Sequence Design (2nd ed.). John Wiley & Sons. https://doi.org/10.1002/9781118633953

[13] Jackson EF, Ginsberg LE, Schomer DF, Leeds NE., (1997). A review of MRI pulse sequences and techniques in neuroimaging. Surg Neurol. 47(2):185-99. doi: 10.1016/s0090-3019(96)00375-8. PMID: 9040824

[14] Goerner, F. L., & Clarke, G. D. (2011). Measuring signal-to-noise ratio in partially parallel imaging MRI. Medical Physics, 38(9), 5049–5057. doi:10.1118/1.3618730

[15] Khunteta, A., & Ghosh, D. (2014). Edge Detection via Edge-Strength Estimation Using Fuzzy Reasoning and Optimal Threshold Selection Using Particle Swa

[16] Pech Pacheco, Jose Luis & Cristobal, Gabriel & Chamorro-Martinez, J. & Fernandez-Valdivia, J., (2000). Diatom autofocusing in brightfield microscopy: A comparative study. Pattern

Recognition, Proceedings. 15th International Conference on. 3. 314-317 vol.3. 10.1109/ICPR.2000.903548.

[17] Zhai, G., & Min, X. (2020). Perceptual image quality assessment: a survey. Science China Information Sciences, 63(11). doi:10.1007/s11432-019-2757-1

[18] Plewes, D. B., & Kucharczyk, W. (2012). Physics of MRI: A primer. Journal of Magnetic Resonance Imaging, 35(5), 1038–1054.doi:10.1002/jmri.23642

[19] Zellers, J. A., Commean, P. K., Chen, L., Mueller, M. J., & Hastings, M. K. (2021). A limited number of slices yields comparable results to all slices in foot intrinsic muscle deterioration ratio on computed tomography and magnetic resonance imaging. Journal of biomechanics, 129, 110750. https://doi.org/10.1016/j.jbiomech.2021.110750

[20] Mahesh M. (2013). The Essential Physics of Medical Imaging, Third Edition. Medical physics, 40(7), 10.1118/1.4811156. https://doi.org/10.1118/1.4811156

Downloads

Published

2025-07-18

How to Cite

Amna saeed qaeed, Mawada M. Funjan, & Maryam Issa Al-Ani. (2025). Optimizing T1-Weighted MRI Image quality: A Comparative Study in two Acquisition protocols in Lumbar Spine Imaging. International Journal of Computational and Experimental Science and Engineering, 11(3). https://doi.org/10.22399/ijcesen.3517

Issue

Section

Research Article