Bibliometric Insight into Artificial Intelligence Application in Investment
DOI:
https://doi.org/10.22399/ijcesen.864Keywords:
Artificial intelligence, Investment, Robo advisors, Bibliometric, VOS viewer.Abstract
This study explores the key trends and ideas around using artificial intelligence in investment. The authors employ the bibliometric approach, using VOS viewer software to analyze 582 academic articles from the SCOPUS database between 2004 and 2023. The findings show that interest in artificial intelligence within investment has grown since 2017, reflecting a delay in its adoption by the investment industry. China, the United States, India, and the United Kingdom were identified as the leading countries researching this topic. The National Research University Higher School of Economics, Russia, and Spiru Haret University, Romania emerged as the most active institution in this area. It highlights the growing adoption of AI across various financial institutions, including banks, hedge funds, and fintech firms, due to its ability to analyze extensive datasets, enhance decision-making, and optimize portfolios. Key AI-driven, cost-effective investment advice. These technologies outperform traditional advisors' inefficiency and objectivity but face challenges in gaining trust among seasonal investors. However, the study has limitations, as it only used articles from the SCOPUS database and focused solely on English–language publications. The future directions emphasize the integration of AI with sustainability and natural language processing, reflecting its potential to address broader societal challenges. The study underlines that extensive regulatory frameworks, improved collaboration, and user-centric AI solutions are required to optimize its influence on investment practices.
References
Li, X., & Tang, P. (2020). Stock index prediction based on wavelet transform and FCD‐MLGRU. Journal of Forecasting. 39(8);1229–1237. https://doi.org/10.1002/for.2682.
Wall, L. D. (2018). Some financial regulatory implications of artificial intelligence. Journal of Economics and Business. 100;55–63. https://doi.org/10.1016/j.jeconbus.2018.05.003.
Holzinger, A., Kieseberg, P., Weippl, E., & Tjoa, A. M. (2018). Current advances, trends and challenges of machine learning and knowledge extraction: From machine learning to explainable AI. In Lecture Notes in Computer Science. Springer International Publishing. 1–8.
Ashta, A., & Herrmann, H. (2021). Artificial intelligence and fintech: An overview of opportunities and risks for banking, investments, and microfinance. Strategic Change. 30(3);211–222. https://doi.org/10.1002/jsc.2404.
Jain, R., & Vanzara, R. (2023). Emerging trends in AI-based stock market prediction: A comprehensive and systematic review. The 4th International Electronic Conference on Applied Sciences, 254.
Au, C.-D., Klingenberger, L., Svoboda, M., & Frère, E. (2021). Business model of sustainable robo-advisors: Empirical insights for practical implementation. Sustainability. 13(23);13009. https://doi.org/10.3390/su132313009.
D’Acunto, F., & Rossi, A. G. (2022). FinTech and robo-advising: The transformation role of AI in personal finance. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4100784.
Phoon, K., & Koh, F. (2017). Robo-advisors and wealth management. The Journal of Alternative Investments. 20(3);79–94. https://doi.org/10.3905/jai.2018.20.3.079.
Park, J. Y., Ryu, J. P., & Shin, H. J. (2016). Robo-Advisors for portfolio management. Advanced Science and Technology Letters. https://doi.org/10.14257/astl.2016.141.21.
Jung, D., Dorner, V., Weinhardt, C., & Pusmaz, H. (2018). Designing a robo-advisor for risk-averse, low-budget consumers. Electronic Markets. 28(3);367–380. https://doi.org/10.1007/s12525-017-0279-9.
Laukkanen, T., & Pasanen, M. (2008). Mobile banking innovators and early adopters: How they differ from other online users? Journal of Financial Services Marketing. 13(2);86–94. https://doi.org/10.1057/palgrave.fsm.4760077.
Belanche, D., Casaló, L. V., & Flavián, C. (2019). Artificial Intelligence in FinTech: understanding robo-advisors adoption among customers. Industrial Management + Data Systems. 119(7);1411–1430. https://doi.org/10.1108/imds-08-2018-0368.
Say, C. (2018). 50 soruda yapay zeka. Bilim ve Gelecek Kitapliği.
Gokoglan, K., & Sevim, H. (2024). The impact of artificial intelligence recommendations on individual investor decisions. Pressacademia. https://doi.org/10.17261/pressacademia.2024.1897.
Ciarrochi, J. V., & Deane, F. P. (2001). Emotional competence and willingness to seek help from professional and nonprofessional sources. British Journal of Guidance & Counselling. 29(2);233–246. https://doi.org/10.1080/03069880020047157.
Mayer, J. D., & Salovey, P. (1993). The Intelligence of Emotional Intelligence. Intelligence. 17;433–442.
Zakaria, N., Sulaiman, A., Min, F. S., & Feizollah, A. (2023). Machine learning In the financial industry: A bibliometric approach to evidencing applications. Cogent Social Sciences. 9(2). https://doi.org/10.1080/23311886.2023.2276609.
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research. 133;285–296. https://doi.org/10.1016/j.jbusres.2021.04.070.
Verma, S., & Gustafsson, A. (2020). Investigating the emerging COVID-19 research trends in the field of business and management: A bibliometric analysis approach. Journal of Business Research. 118;253–261. https://doi.org/10.1016/j.jbusres.2020.06.057.
Alshater, M. M., Saba, I., Supriani, I., & Rabbani, M. R. (2022). Fintech in islamic finance literature: A review. Heliyon. 8(9);e10385. https://doi.org/10.1016/j.heliyon.2022.e10385.
Baker, S. R., Bloom, N., Davis, S. J., Kost, K., Sammon, M. C., & Viratyosin, T. (2020). The unprecedented stock market impact of COVID-19. The Review of Corporate Finance Studies. 9(April);622–655.
Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America. 102(46);16569–16572. https://doi.org/10.1073/pnas.0507655102.
Babu, J., & Velmurugan. (2024). Tri-decadal review on personal finance and financial well-being. International Research Journal of Multidisciplinary Scope. 05(03);1021–1042. https://doi.org/10.47857/irjms.2024.v05i03.0985.
Acedo, F. J., Barroso, C., Casanueva, C., & Galán, J. L. (2006). Co‐authorship in management and organizational studies: An empirical and network analysis. The Journal of Management Studies. 43(5);957–983. https://doi.org/10.1111/j.1467-6486.2006.00625.x.
Tahamtan, I., Safipour Afshar, A., & Ahamdzadeh, K. (2016). Factors affecting number of citations: a comprehensive review of the literature. Scientometrics. 107(3);1195–1225. https://doi.org/10.1007/s11192-016-1889-2.
Cisneros, L., Ibanescu, M., Keen, C., Lobato-Calleros, O., & Niebla-Zatarain, J. (2018). Bibliometric study of family business succession between 1939 and 2017: mapping and analyzing authors’ networks. Scientometrics. 117(2);919–951. https://doi.org/10.1007/s11192-018-2889-1.
Pattnaik, D., Hassan, M. K., Kumar, S., & Paul, J. (2020). Trade credit research before and after the global financial crisis of 2008 - A bibliometric overview. Research in International Business and Finance. 54(101287);101287. https://doi.org/10.1016/j.ribaf.2020.101287.
Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan, P. V., Janssen, M., Jones, P., Kar, A. K., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., … Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice, and policy. International Journal of Information Management. 57(101994);101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002.
Chueca Vergara, C., & Ferruz Agudo, L. (2021). Fintech and sustainability: Do they affect each other? Sustainability. 13(13);7012. https://doi.org/10.3390/su13137012.
Debrah, C., Chan, A. P. C., & Darko, A. (2022). Green finance gap in green buildings: A scoping review and future research needs. Building and Environment. 207(108443);108443. https://doi.org/10.1016/j.buildenv.2021.108443.
Amir, M., & Khan, S. Z. (2022). Assessment of renewable energy: Status, challenges, COVID-19 impacts, opportunities, and sustainable energy solutions in Africa. Energy and Built Environment. 3(3);348–362. https://doi.org/10.1016/j.enbenv.2021.03.002.
Grennan, J., & Michaely, R. (2021). FinTechs and the market for financial analysis. Journal of Financial and Quantitative Analysis. 56(6);1877–1907. https://doi.org/10.1017/s0022109020000721.
Quatrini, S. (2021). Challenges and opportunities to scale up sustainable finance after the COVID-19 crisis: Lessons and promising innovations from science and practice. Ecosystem Services. 48(101240);101240. https://doi.org/10.1016/j.ecoser.2020.101240.
Gongane, V. U., Munot, M. V., & Anuse, A. D. (2022). Detection and moderation of detrimental content on social media platforms: current status and future directions. Social Network Analysis and Mining. 12(1);129. https://doi.org/10.1007/s13278-022-00951-3.
Zhang, J., & He, S. (2020). Smart technologies and urban life: A behavioral and social perspective. Sustainable Cities and Society. 63(102460);102460. https://doi.org/10.1016/j.scs.2020.102460.
Bottero, M., Dell’Anna, F., & Morgese, V. (2021). Evaluating the transition towards post-carbon cities: A literature review. Sustainability. 13(2);567. https://doi.org/10.3390/su13020567.
Qoronfleh, M. W., Chouchane, L., Mifsud, B., Al Emadi, M., & Ismail, S. (2020). THE FUTURE OF MEDICINE, healthcare innovation through precision medicine: a policy case study of Qatar. Life Sciences, Society and Policy. 16(1);12. https://doi.org/10.1186/s40504-020-00107-1.
Shet, D., & Shah, M. (2023). Predicting stock market using machine learning: best and accurate way to know future stock prices. International Journal of System Assurance Engineering and Management. 14(1);1–18. https://doi.org/10.1007/s13198-022-01811-1.
Al Janabi, M. A. M. (2020). Multivariate portfolio optimization under illiquid market prospects: a review of theoretical algorithms and practical techniques for liquidity risk management. Journal of Modelling in Management. 16(1);288–309. https://doi.org/10.1108/jm2-07-2019-0178.
Sonkavde, G., Dharrao, D. S., Bongale, A. M., Deokate, S. T., Doreswamy, D., & Bhat, S. K. (2023). Forecasting stock market prices using machine learning and deep learning models: A systematic review, performance analysis and discussion of implications. International Journal of Financial Studies. 11(3);94. https://doi.org/10.3390/ijfs11030094.
Lăzăroiu, G., Bogdan, M., Geamănu, M., Hurloiu, L., Luminița, L., & Ștefănescu, R. (2023). Artificial intelligence algorithms and cloud computing technologies in blockchain-based fintech management. Oeconomia Copernicana. 14(3);707–730. https://doi.org/10.24136/oc.2023.021.
Lin, C.-C., Huang, A. Y. Q., & Lu, O. H. T. (2023). Artificial intelligence in intelligent tutoring systems toward sustainable education: a systematic review. Smart Learning Environments. 10(1). https://doi.org/10.1186/s40561-023-00260-y.
Andronie, M., Iatagan, M., Uță, C., Hurloiu, I., Dijmărescu, A., & Dijmărescu, I. (2023). Big data management algorithms in artificial Internet of Things-based fintech. Oeconomia Copernicana. 14(3);769–793. https://doi.org/10.24136/oc.2023.023.
Shafiullah, M., Rahman, S., Imteyaz, B., Aroua, M. K., Hossain, M. I., & Rahman, S. M. (2022). Review of smart city energy modeling in Southeast Asia. Smart Cities. 6(1);72–99. https://doi.org/10.3390/smartcities6010005.
Calo, R. (2018). Artificial Intelligence Policy: A Primer and Roadmap. https://doi.org/10.6092/ISSN.2531-6133/8670.
Ahmed, N., Assadi, M., Ahmed, A. A., & Banihabib, R. (2023). Optimal design, operational controls, and data-driven machine learning in sustainable borehole heat exchanger coupled heat pumps: Key implementation challenges and advancement opportunities. Energy for Sustainable Development: The Journal of the International Energy Initiative. 74;231–257. https://doi.org/10.1016/j.esd.2023.04.004.
Lewis, P. R., Marsh, S., & Pitt, J. (2021). AI vs “AI”: Synthetic minds or speech acts. IEEE Technology and Society Magazine. 40(2);6–13. https://doi.org/10.1109/mts.2021.3077052.
Das, S. R., & Chen, M. Y. (2007). Yahoo! For Amazon: Sentiment extraction from small talk on the web. Management Science. 53(9);1375–1388. https://doi.org/10.1287/mnsc.1070.0704.
Puntoni, S., Reczek, R. W., Giesler, M., & Botti, S. (2021). Consumers and artificial intelligence: An experiential perspective. Journal of Marketing. 85(1);131–151. https://doi.org/10.1177/0022242920953847.
Wamba-Taguimdje, S.-L., Fosso Wamba, S., Kala Kamdjoug, J. R., & Tchatchouang Wanko, C. E. (2020). Influence of artificial intelligence (AI) on firm performance: the business value of AI-based transformation projects. Business Process Management Journal. 26(7);1893–1924. https://doi.org/10.1108/bpmj-10-2019-0411.
Sjödin, D., Parida, V., Kohtamäki, M., & Wincent, J. (2020). An agile co-creation process for digital servitization: A micro-service innovation approach. Journal of Business Research. 112;478–491. https://doi.org/10.1016/j.jbusres.2020.01.009.
Kamble, S. S., Gunasekaran, A., Ghadge, A., & Raut, R. (2020). A performance measurement system for industry 4.0 enabled smart manufacturing system in SMMEs- A review and empirical investigation. International Journal of Production Economics. 229(107853);107853. https://doi.org/10.1016/j.ijpe.2020.107853.
Liu, J., Chang, H., Forrest, J. Y.-L., & Yang, B. (2020). Influence of artificial intelligence on technological innovation: Evidence from the panel data of China’s manufacturing sectors. Technological Forecasting and Social Change. 158(120142);120142. https://doi.org/10.1016/j.techfore.2020.120142.
Nti, I. K., Adekoya, A. F., & Weyori, B. A. (2020). A systematic review of fundamental and technical analysis of stock market predictions. Artificial Intelligence Review. 53(4);3007–3057. https://doi.org/10.1007/s10462-019-09754-z.
Costantino, F., Di Gravio, G., & Nonino, F. (2015). Project selection in project portfolio management: An artificial neural network model based on critical success factors. International Journal of Project Management. 33(8);1744–1754. https://doi.org/10.1016/j.ijproman.2015.07.003.
Flavián, C., Pérez-Rueda, A., Belanche, D., & Casaló, L. V. (2022). Intention to use analytical artificial intelligence (AI) in services – the effect of technology readiness and awareness. Journal of Service Management. 33(2);293–320. https://doi.org/10.1108/josm-10-2020-0378.
Asadi, S., Hadavandi, E., Mehmanpazir, F., & Nakhostin, M. M. (2012). Hybridization of evolutionary Levenberg–Marquardt neural networks and data pre-processing for stock market prediction. Knowledge-Based Systems. 35;245–258. https://doi.org/10.1016/j.knosys.2012.05.003.
Bareis, J., & Katzenbach, C. (2022). Talking AI into being: The narratives and imaginaries of national AI strategies and their performative politics. Science, Technology & Human Values. 47(5);855–881. https://doi.org/10.1177/01622439211030007.
Caputo, F., Cillo, V., Candelo, E., & Liu, Y. (2019). Innovating through digital revolution: The role of soft skills and Big Data in increasing firm performance. Management Decision. 57(8);2032–2051. https://doi.org/10.1108/md-07-2018-0833.
Klumpp, M. (2018). Automation and artificial intelligence in business logistics systems: human reactions and collaboration requirements. International Journal of Logistics Research and Applications. 21(3);224–242. https://doi.org/10.1080/13675567.2017.1384451.
Brynjolfsson, E., Rock, D., & Syverson, C. (2021). The productivity J-curve: How intangibles complement general purpose technologies. American Economic Journal Macroeconomics. 13(1);333–372. https://doi.org/10.1257/mac.20180386.
Lash, M. T., & Zhao, K. (2016). Early predictions of movie success: The who, what, and when of profitability. Journal of Management Information Systems : JMIS. 33(3);874–903. https://doi.org/10.1080/07421222.2016.1243969.
Bianchini, A., Rossi, J., & Pellegrini, M. (2019). Overcoming the main barriers of circular economy implementation through a new visualization tool for circular business models. Sustainability. 11(23);6614. https://doi.org/10.3390/su11236614.
Königstorfer, F., & Thalmann, S. (2020). Applications of Artificial Intelligence in commercial banks – A research agenda for behavioral finance. Journal of Behavioral and Experimental Finance. 27(100352), 100352. https://doi.org/10.1016/j.jbef.2020.100352.
UYSAL, F. (2025). Electronic Components Detection Using Various Deep Learning Based Neural Network Models. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.855
jaber, khalid, Lafi, M., Alkhatib, A. A., AbedAlghafer, A. K., Abdul Jawad, M., & Ahmad, A. Q. (2024). Comparative Study for Virtual Personal Assistants (VPA) and State-of-the-Art Speech Recognition Technology. International Journal of Computational and Experimental Science and Engineering, 10(3). https://doi.org/10.22399/ijcesen.383
Sheela Margaret D, Elangovan N, Sriram M, & Vedha Balaji. (2024). The Effect of Customer Satisfaction on Use Continuance in Bank Chatbot Service. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.410
J. Prakash, R. Swathiramya, G. Balambigai, R. Menaha, & J.S. Abhirami. (2024). AI-Driven Real-Time Feedback System for Enhanced Student Support: Leveraging Sentiment Analysis and Machine Learning Algorithms. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.780
Bandla Raghuramaiah, & Suresh Chittineni. (2025). BreastHybridNet: A Hybrid Deep Learning Framework for Breast Cancer Diagnosis Using Mammogram Images. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.812
Bandla Raghuramaiah, & Suresh Chittineni. (2025). BCDNet: An Enhanced Convolutional Neural Network in Breast Cancer Detection Using Mammogram Images. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.811
Nuthakki, praveena, & Pavankumar T. (2024). Comparative Assessment of Machine Learning Algorithms for Effective Diabetes Prediction and Care. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.606
Robert, N. R., A. Cecil Donald, & K. Suresh. (2025). Artificial Intelligence Technique Based Effective Disaster Recovery Framework to Provide Longer Time Connectivity in Mobile Ad-hoc Networks. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.713
ZHANG, J. (2025). Artificial intelligence contributes to the creative transformation and innovative development of traditional Chinese culture. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.860
Serap ÇATLI DİNÇ, AKMANSU, M., BORA, H., ÜÇGÜL, A., ÇETİN, B. E., ERPOLAT, P., … ŞENTÜRK, E. (2024). Evaluation of a Clinical Acceptability of Deep Learning-Based Autocontouring: An Example of The Use of Artificial Intelligence in Prostate Radiotherapy. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.386
S. Esakkiammal, & K. Kasturi. (2024). Advancing Educational Outcomes with Artificial Intelligence: Challenges, Opportunities, And Future Directions. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.799
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.