Enhancing Load Balancing Efficiency in Distributed Systems through Linear Programming Techniques in WSCLB

Authors

  • Paul Sheeba Ranjini Sri Krishna College of Technology
  • Tulasiram Hemamalini
  • Angalakurichi Natraj Senthilvel

DOI:

https://doi.org/10.22399/ijcesen.1311

Keywords:

Load balancing, Distributed Systems, Linear Programming, optimization techniques, Weighted Server Cluster Load, Balancer Framework

Abstract

Optimizing network performance and resource allocation fairness in distributed systems requires load balancing efficiency. The main goal is to design and deploy Linear Programming (LP) methods in Weighted Server Cluster Load Balancer (WSCLB) to accomplish this goal. These methods reallocate jobs between nodes to reduce load distribution discrepancies, avoiding bottlenecks and boosting system performance. The purpose is to balance load, so each node runs at optimum capacity, lowering latency and improving distributed system resilience. The solution uses LP to optimize load distribution in WSCLB, creating a more robust and efficient network that can handle variable demand without performance deterioration. The study emphasizes mathematical optimization's role in current distributed system load balancing. The first instance of Load_Distribution_Pre-Optimization showed 5 load levels for 5 nodes. In load level 1, the top and lower values are 93 and 15, in load level 2, 87 and 21, in load level 3, 88 and 24, in load level 4, 75 and 10, and in load level 5, 89 and 44. In Load_Distribution_Post-Optimization 2, 5 load levels for 5 nodes were observed. In load level 1, the top and lower values are 93 and 29, in load level 2, 96 and 10, in load level 3, 72 and 49, in load level 4, 94 and 42, and in load level 5, 91 and 14.

References

Chinipardaz, M., Amraee, S., & Sarlak, A. (2024). Joint downlink user association and interference avoidance with a load balancing approach in backhaul-constrained HetNets. Plos one, 19(3), 1-31.

Yang, P., Zhang, L., Liu, H., & Li, G. (2024). Reducing idleness in financial cloud services via multi-objective evolutionary reinforcement learning based load balancer. Science China Information Sciences, 67(2), 1-12.

Simaiya, S., Lilhore, U. K., Sharma, Y. K., Rao, K. B., Maheswara Rao, V. V. R., Baliyan, A., ... & Alroobaea, R. (2024). A hybrid cloud load balancing and host utilization prediction method using deep learning and optimization techniques. Scientific Reports, 14(1), 1-18.

Eberle, F., Gupta, A., Megow, N., Moseley, B., & Zhou, R. (2024). Configuration balancing for stochastic requests. Mathematical Programming, 1-37

Almeida, J., Santos, D. R. D., & Figueira, J. R. (2022). A multi-objective model for thesis defence scheduling. arXiv preprint arXiv:2205.07727. 312(1), 92-116.

Nauman, U., Zhang, Y., Li, Z., & Zhen, T. (2024). Systematic Cloud-Based Optimization: Twin-Fold Moth Flame Algorithm for VM Deployment and Load-Balancing. Intelligent Automation & Soft Computing, 39(3), 477-510.

Jajan, K. I. K., & Zeebaree, S. R. (2024). Optimizing Performance in Distributed Cloud Architectures: A Review of Optimization Techniques and Tools. The Indonesian Journal of Computer Science, 13(2), 1-23.

Zhang, G., Zhao, P., & Zhang, A. (2024). Load Balancing for Energy Harvesting Mobile Edge Computing. In Privacy Preservation in Distributed Systems: Algorithms and Applications, Cham: Springer Nature Switzerland. 217-230.

Gholami, M., Muyeen, S. M., & Lin, S. (2024). Optimizing microgrid efficiency: Coordinating commercial and residential demand patterns with shared battery energy storage. Journal of Energy Storage, 88, 1-14.

Kovásznai, G., & Nsaif, M. (2024). Integer programming-based optimization of power consumption for data center networks. Acta Cybernetica, 26(3), 563-579.

Xinfa, T., Jingjing, W., Yonghua, W., & Youwei, W. (2024). The Optimization of Supply–Demand Balance Dispatching and Economic Benefit Improvement in a Multi-Energy Virtual Power Plant within the Jiangxi Power Market. Energies, 17(18), 1-12.

Zhou, Y., Lu, F., Xu, J., & Wu, L. (2024). Multi-Agent Cross-Domain Collaborative Task Allocation Problem Based on Multi-Strategy Improved Dung Beetle Optimization Algorithm. Applied Sciences, 14(16), 1-25.

Chethan, M., & Kuppan, R. (2024). A review of FACTS device implementation in power systems using optimization techniques. Journal of Engineering and Applied Science, 71(1), 1-36

Akter, A., Zafir, E. I., Dana, N. H., Joysoyal, R., Sarker, S. K., Li, L., ... & Kamwa, I. (2024). A review on microgrid optimization with meta-heuristic techniques: Scopes, trends and recommendation. Energy Strategy Reviews, 51(2024), 1-27.

He, X., Tsang, D. H., & Chen, Y. (2024). Long-term carbon-efficient planning for geographically shiftable resources: A monte carlo tree search approach. IEEE Transactions on Power Systems. 1-11.

Zavieh, H., Javadpour, A., Ja’fari, F., Sangaiah, A. K., & Słowik, A. (2024). Enhanced efficiency in fog computing: a fuzzy data-driven machine selection strategy. International Journal of Fuzzy Systems, 26(1), 368-389.

Singh, G. D., Tripathi, V., Dumka, A., Rathore, R. S., Bajaj, M., Escorcia-Gutierrez, J., ... & Prokop, L. (2024). A novel framework for capacitated SDN controller placement: Balancing latency and reliability with PSO algorithm. Alexandria Engineering Journal, 87, 77-92.

Chen, H., Liu, W., Oldache, M., & Pervez, A. (2024). Research on Train Loading and Unloading Mode and Scheduling Optimization in Automated Container Terminals. Journal of Marine Science and Engineering, 12(8), pp. 1-12.

Ikram, A. I., Ullah, A., Datta, D., Islam, A., & Ahmed, T. (2024). Optimizing energy consumption in smart homes: Load scheduling approaches. IET Power Electronics, 17(16), 2656-2668.

Balavignesh, S., Kumar, C., Sripriya, R., & Senjyu, T. (2024). An enhanced coati optimization algorithm for optimizing energy management in smart grids for home appliances. Energy Reports, 11, 3695-3720.

Megantara, T. R., Supian, S., & Chaerani, D. (2024). Mathematical Modeling on Integrated Vehicle Assignment and Rebalancing in Ride-hailing System with Uncertainty Using Fuzzy Linear Programming. J. Adv. Res. Appl. Sci. Eng. Technol, 42, 133-144.

Wijesekara, P. A. D. S. N. (2024). Load Balancing in Blockchain Networks: A Survey. International Journal of Electrical and Electronic Engineering & Telecommunications, 13(3), 1-17.

Apribowo, C. H. B., Hadi, S. P., Wijaya, F. D., & Setyonegoro, M. I. B. (2024). Optimal sizing and placement of battery energy storage system for maximum variable renewable energy penetration considering demand response flexibility: A case in Lombok power system, Indonesia. Energy Conversion and Management: X, 23, 100620.

Trinh, H. T., & Nguyen, T. T. (2024). Optimal placement of distributed generations on distribution network for reducing power loss and improving feeder balance. TELKOMNIKA (Telecommunication Computing Electronics and Control), 22(2), 471-479.

Hidayat, T., Ramli, K., Thereza, N., Daulay, A., Rushendra, R., & Mahardiko, R. (2024, July). Machine Learning to Estimate Workload and Balance Resources with Live Migration and VM Placement. In Informatics, 11(3), 1-15.

Downloads

Published

2025-04-01

How to Cite

Ranjini, P. S., Hemamalini , T., & Senthilvel, A. N. (2025). Enhancing Load Balancing Efficiency in Distributed Systems through Linear Programming Techniques in WSCLB. International Journal of Computational and Experimental Science and Engineering, 11(2). https://doi.org/10.22399/ijcesen.1311

Issue

Section

Research Article