Enhancing Secure Image Transmission Through Advanced Encryption Techniques Using CNN and Autoencoder-Based Chaotic Logistic Map Integration
DOI:
https://doi.org/10.22399/ijcesen.761Keywords:
Autoencoder, Convolutional neural network, Image encryption, Logistic map, Multimedia securityAbstract
Secure image transmission over the Internet has become a critical issue as digital media become increasingly vulnerable and multimedia technologies progress rapidly. The use of traditional encryption methods to protect multimedia content is often not sufficient, so more sophisticated strategies are required. As part of this paper, an autoencoder-based chaotic logistic map is combined with convolutional neural networks (CNNs) to encrypt images. As a result of optimizing CNN feature extraction, chaotic logistic maps ensure strong encryption while maintaining picture quality and reducing computational costs. In addition to Mean Squared Errors (MSE), entropy, correlation coefficients, and Peak Signal-to-Noise Ratios (PSNRs), the method shows higher performance. In addition to providing increased security, adaptability, and effectiveness, the results prove the method is resilient to many types of attacks. In this study, CNNs and chaotic systems are combined to improve data security, communication, and image transmission.
References
Wang, C., Zhang, T., Chen, H., Huang, Q., Ni, J., & Zhang, X. (2022). A novel encryption-then-lossy-compression scheme of color images using customized residual dense spatial network. IEEE Transactions on Multimedia, 1. https://doi.org/10.1109/TMM.2022.3171099 DOI: https://doi.org/10.1109/TMM.2022.3171099
Zhang, X., Feng, G., Ren, Y., & Qian, Z. (2012). Scalable coding of encrypted images. IEEE Transactions on Image Processing, 21(6), 3108-3114. https://doi.org/10.1109/TIP.2012.2187671 DOI: https://doi.org/10.1109/TIP.2012.2187671
Qin, C., Zhou, Q., Cao, F., Dong, J., & Zhang, X. (2019). Flexible lossy compression for selective encrypted image with image inpainting. IEEE Transactions on Circuits and Systems for Video Technology, 29(11), 3341-3355. https://doi.org/10.1109/TCSVT.2018.2878026 DOI: https://doi.org/10.1109/TCSVT.2018.2878026
Yang, F., Mou, J., Sun, K., & Chu, R. (2020). Lossless image compression-encryption algorithm based on BP neural network and chaotic system. Multimedia Tools and Applications, 79(27), 19963-19992. https://doi.org/10.1109/TCSVT.2018.2878026 DOI: https://doi.org/10.1007/s11042-020-08821-w
Ni, R., Wang, F., Wang, J., & Hu, Y. (2021). Multi-image encryption based on compressed sensing and deep learning in optical gyrator domain. IEEE Photonics Journal, 13(3), 1-16. https://doi.org/10.1109/JPHOT.2021.3076480 DOI: https://doi.org/10.1109/JPHOT.2021.3076480
Zhou, N., Zhang, A., Wu, J., Pei, D., & Yang, Y. (2014). Novel hybrid image compression–encryption algorithm based on compressive sensing. Optik, 125(18), 5075-5080. https://doi.org/10.1016/j.ijleo.2014.06.054 DOI: https://doi.org/10.1016/j.ijleo.2014.06.054
Zhou, N., Pan, S., Cheng, S., & Zhou, Z. (2016). Image compression–encryption scheme based on hyper-chaotic system and 2D compressive sensing. Optics & Laser Technology, 82, 121-133. https://doi.org/10.1016/j.optlastec.2016.02.018 DOI: https://doi.org/10.1016/j.optlastec.2016.02.018
Zhou, N., Jiang, H., Gong, L., & Xie, X. (2018). Double-image compression and encryption algorithm based on co-sparse representation and random pixel exchanging. Optics and Lasers in Engineering, 110, 72-79. https://doi.org/10.1016/j.optlaseng.2018.05.014 DOI: https://doi.org/10.1016/j.optlaseng.2018.05.014
Visually asymmetric image encryption algorithm based on SHA-3 and compressive sensing by embedding encrypted image. (2022). Alexandria Engineering Journal, 61(10), 7637-7647. https://doi.org/10.1016/j.aej.2022.01.015 DOI: https://doi.org/10.1016/j.aej.2022.01.015
Chai, X., Gan, Z., Chen, Y., & Zhang, Y. (2017). A visually secure image encryption scheme based on compressive sensing. Signal Processing, 134, 35-51. https://doi.org/10.1016/j.sigpro.2016.11.016 DOI: https://doi.org/10.1016/j.sigpro.2016.11.016
Xu, Q., Sun, K., He, S., & Zhu, C. (2020). An effective image encryption algorithm based on compressive sensing and 2D-SLIM. Optics and Lasers in Engineering, 134, Article 106178. DOI: https://doi.org/10.1016/j.optlaseng.2020.106178
Gan, Z., Bi, J., Ding, W., & Chai, X. (2021). Exploiting 2D compressed sensing and information entropy for secure color image compression and encryption. Neural Computing and Applications, 33(19), 12845-12867. https://doi.org/10.1007/s00521-021-05937-4 DOI: https://doi.org/10.1007/s00521-021-05937-4
Ghaffari, A. (2021). Image compression-encryption method based on two-dimensional sparse recovery and chaotic system. Scientific Reports, 11(1), 369. https://doi.org/10.1038/s41598-020-79747-4 DOI: https://doi.org/10.1038/s41598-020-79747-4
Li, P., & Lo, K.-T. (2018). A content-adaptive joint image compression and encryption scheme. IEEE Transactions on Multimedia, 20(8), 1960-1972. https://doi.org/10.1109/TMM.2017.2786860 DOI: https://doi.org/10.1109/TMM.2017.2786860
Li, P., & Lo, K.-T. (2019). Joint image encryption and compression schemes based on 16 × 16 DCT. Journal of Visual Communication and Image Representation, 58, 12-24. https://doi.org/10.1016/j.jvcir.2018.11.018 DOI: https://doi.org/10.1016/j.jvcir.2018.11.018
Ballé, J., Minnen, D., Singh, S., Hwang, S. J., & Johnston, N. (2018). Variational image compression with a scale hyperprior. International Conference on Learning Representations.
Ghubaish, A., Salman, T., Zolanvari, M., Unal, D., Al-Ali, A., & Jain, R. (2021). Recent advances in the Internet-of-Medical-Things (IoMT) systems security. IEEE Internet of Things Journal, 8(11), 8707-8718. DOI: https://doi.org/10.1109/JIOT.2020.3045653
Lakshmi, T. N., Jyothi, S., & Kumar, M. R. (2021). Image Encryption Algorithms Using Machine Learning and Deep Learning Techniques—A Survey. In Springer, Cham (pp. 507-515). DOI: https://doi.org/10.1007/978-3-030-68291-0_40
Ghadirli, H. M., Nodehi, A., & Enayatifar, R. (2019). An overview of encryption algorithms in color images. Signal Processing, 164, 163-185. DOI: https://doi.org/10.1016/j.sigpro.2019.06.010
Kaur, M., & Kumar, V. (2020). A comprehensive review on image encryption techniques. Archives of Computational Methods in Engineering, 27(1), 15-43. DOI: https://doi.org/10.1007/s11831-018-9298-8
Yang, N., Zhang, S., Bai, M., & Li, S. (2022). Medical image encryption based on Josephus traversing and hyperchaotic Lorenz system. Journal of Shanghai Jiaotong University, 29(1), 91-108. DOI: https://doi.org/10.1007/s12204-022-2555-x
Wang, T., & Wang, M.-H. (2020). Hyperchaotic image encryption algorithm based on bit-level permutation and DNA encoding. Optics and Laser Technology, 132, 106355. DOI: https://doi.org/10.1016/j.optlastec.2020.106355
Sang, Y., Sang, J., & Alam, M. S. (2022). Image encryption based on logistic chaotic systems and deep autoencoder. Pattern Recognition Letters, 153, 59-66. DOI: https://doi.org/10.1016/j.patrec.2021.11.025
Sun, X., & Chen, Z. (2022). A new image encryption strategy based on Arnold transformation and logistic map. In Proceedings of the 11th International Conference on Computer Engineering and Networks (pp. 712-720). Springer, Singapore. DOI: https://doi.org/10.1007/978-981-16-6554-7_77
Pak, C., & Huang, L. (2017). A new color image encryption using combination of the 1D chaotic map. Signal Processing, 138, 129-137. DOI: https://doi.org/10.1016/j.sigpro.2017.03.011
Tang, J., Zhang, F., & Ni, H. (2023). A novel fast image encryption scheme based on a new one-dimensional compound sine chaotic system. The Visual Computer, 39(10), 4955-4983. DOI: https://doi.org/10.1007/s00371-022-02640-w
R. Ch, M. Radha, M. Mahendar, and P. Manasa, "A Comparative Analysis for Deep-Learning-Based Approaches for Image Forgery Detection," International Journal of Systematic Innovation, 8(1),1–10, 2024.
Zhu, S., Deng, X., Zhang, W., & Zhu, C. (2023). Secure image encryption scheme based on a new robust chaotic map and strong S-box. Mathematics and Computers in Simulation, 207, 322-346. DOI: https://doi.org/10.1016/j.matcom.2022.12.025
Wang, F., Sang, J., Huang, C., Cai, B., Xiang, H., & Sang, N. (2022). Applying deep learning to known-plaintext attack on chaotic image encryption schemes. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (pp. 3029-3033). DOI: https://doi.org/10.1109/ICASSP43922.2022.9746561
Panwar, K., Kukreja, S., Singh, A., & Singh, K. K. (2023). Towards deep learning for efficient image encryption. Procedia Computer Science, 218, 644-650. DOI: https://doi.org/10.1016/j.procs.2023.01.046
Wang, C., & Zhang, Y. (2022). A novel image encryption algorithm with deep neural network. Signal Processing, 196, 108536. DOI: https://doi.org/10.1016/j.sigpro.2022.108536
Man, Z., Li, J., Di, X., Sheng, Y., & Liu, Z. (2021). Double image encryption algorithm based on neural network and chaos. Chaos, Solitons & Fractals, 152, 111318. DOI: https://doi.org/10.1016/j.chaos.2021.111318
Maniyath, S. R., & Thanikaiselvan, V. (2020). An efficient image encryption using deep neural network and chaotic map. Microprocessors and Microsystems, 77, 103134. DOI: https://doi.org/10.1016/j.micpro.2020.103134
R. Ch, M. Sridevi, M. Ramchander, V. Ramesh, and V. P. Kumar, "Enhancing Digital Security Using Signa-Deep for Online Signature Verification and Identity Authentication," International Journal of Systematic Innovation, vol. 8, no. 2, pp. 58–69, 2024.
Zhou, S., Zhao, Z., & Wang, X. (2022). Novel chaotic colour image cryptosystem with deep learning. Chaos, Solitons & Fractals, 161, 112380. DOI: https://doi.org/10.1016/j.chaos.2022.112380
BACAK, A., ŞENEL, M., & GÜNAY, O. (2023). Convolutional Neural Network (CNN) Prediction on Meningioma, Glioma with Tensorflow. International Journal of Computational and Experimental Science and Engineering, 9(2), 197–204. Retrieved from https://ijcesen.com/index.php/ijcesen/article/view/210 DOI: https://doi.org/10.22399/ijcesen.1306025
Johnsymol Joy, & Mercy Paul Selvan. (2025). An efficient hybrid Deep Learning-Machine Learning method for diagnosing neurodegenerative disorders. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.701 DOI: https://doi.org/10.22399/ijcesen.701
Sreetha E S, G Naveen Sundar, & D Narmadha. (2024). Enhancing Food Image Classification with Particle Swarm Optimization on NutriFoodNet and Data Augmentation Parameters. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.493 DOI: https://doi.org/10.22399/ijcesen.493
P, P., P, D., R, V., A, Y., & Natarajan, V. P. (2024). Chronic Lower Respiratory Diseases detection based on Deep Recursive Convolutional Neural Network. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.513 DOI: https://doi.org/10.22399/ijcesen.513
U. S. Pavitha, S. Nikhila, & Mohan, M. (2024). Hybrid Deep Learning Based Model for Removing Grid-Line Artifacts from Radiographical Images. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.514 DOI: https://doi.org/10.22399/ijcesen.514
Radhi, M., & Tahseen, I. (2024). An Enhancement for Wireless Body Area Network Using Adaptive Algorithms. International Journal of Computational and Experimental Science and Engineering, 10(3). https://doi.org/10.22399/ijcesen.409 DOI: https://doi.org/10.22399/ijcesen.409
Jha, K., Sumit Srivastava, & Aruna Jain. (2024). A Novel Texture based Approach for Facial Liveness Detection and Authentication using Deep Learning Classifier. International Journal of Computational and Experimental Science and Engineering, 10(3). https://doi.org/10.22399/ijcesen.369 DOI: https://doi.org/10.22399/ijcesen.369
Boddupally JANAIAH, & Suresh PABBOJU. (2024). HARGAN: Generative Adversarial Network BasedDeep Learning Framework for Efficient Recognition of Human Actions from Surveillance Videos. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.587 DOI: https://doi.org/10.22399/ijcesen.587
Sashi Kanth Betha. (2024). ResDenseNet:Hybrid Convolutional Neural Network Model for Advanced Classification of Diabetic Retinopathy(DR) in Retinal Image Analysis. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.693 DOI: https://doi.org/10.22399/ijcesen.693
T. Deepa, & Ch. D. V Subba Rao. (2025). Brain Glial Cell Tumor Classification through Ensemble Deep Learning with APCGAN Augmentation. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.803 DOI: https://doi.org/10.22399/ijcesen.803
Bolleddu Devananda Rao, & K. Madhavi. (2024). BCDNet: A Deep Learning Model with Improved Convolutional Neural Network for Efficient Detection of Bone Cancer Using Histology Images. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.430 DOI: https://doi.org/10.22399/ijcesen.430
URAL, A., & KİLİMCİ, Z. H. (2021). The Prediction of Chiral Metamaterial Resonance using Convolutional Neural Networks and Conventional Machine Learning Algorithms. International Journal of Computational and Experimental Science and Engineering, 7(3), 156–163. Retrieved from https://ijcesen.com/index.php/ijcesen/article/view/165 DOI: https://doi.org/10.22399/ijcesen.973726
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Computational and Experimental Science and Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.